Conservation Planning in a Changing Climate: Assessing the Impacts of Potential Range Shifts on a Reserve Network

Author(s):  
Joshua J. Lawler ◽  
Jeffrey Hepinstall-Cymerman
2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Diana Stralberg ◽  
Dominique Berteaux ◽  
C. Ronnie Drever ◽  
Mark Drever ◽  
Ilona Naujokaitis-Lewis ◽  
...  

2014 ◽  
Author(s):  
Nicole Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


Author(s):  
Nicole F. Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


2014 ◽  
Author(s):  
Nicole F. Angeli ◽  
Javier Otegui ◽  
Margot Wood ◽  
Emma P. Gomez-Ruiz

Global change will causes species range shifts, affecting species interactions. The conservation implications of species range shifts are widely unknown. Through forming an ecology-bioinformatics partnership at the National Evolutionary Synthesis Center-Encyclopedia of Life-Biodiversity Heritage Library Research Sprint, we developed an analytical pipeline to test whether global trends are forcing shifts of mutually dependent species in different spatial directions. We calculated potential overlap between dependent species across climate scenarios within protected areas. We selected the Great Green Macaw (Ara ambiguus) and its nesting host tree the Giant Almendro (Dipteryx panamensis) as a proof-of-concept species pair that will be affected by range shifts. We demonstrate with modeling that the Great Green Macaw will lose approximately 64.0% of suitable habitat in future scenarios, while the Giant Almendro will lose 59.7% of suitable habitat. Species habitat overlaps across 85.3 % of its currently predicted distribution and 69.07% of the remaining habitat predicted in future scenarios. After accounting for spatially explicit protected areas networks, only 20.3% and 40.2 % of remaining habitat persists within protected areas across climate scenarios for the Almendro and Macaw, respectively, and 19.9 % of that habitat overlaps between the species. Currently, we are conducting a literature review to select and expand our list of species for use in the pipeline to detect trends for climate readiness planning in protected areas networks. The analytical pipeline will produce habitat suitability maps for multiple climate scenarios based on current distributions, and these maps will potentially be embedded into the Encyclopedia of Life as free, downloadable files. This is just one of several broader impact products from the research. This work demonstrates that modeling the future distribution of species is limited by biotic interactions and conservation planning should account for climate change scenarios.


Author(s):  
Teng Long ◽  
Junfeng Tang ◽  
Nicholas Pilfold ◽  
Xuzhe Zhao ◽  
Tingfa Dong

Understanding and predicting how species will response to future climate change is crucial for biodiversity conservation. Here, we conducted an assessment of future climate change impacts on the distribution of D. involucrate in China, using the most recent global circulation models developed in the sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the potential range shifts in this species by using an ensemble of species distribution models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested that the temperature annual range, annual mean temperature, and precipitation of the driest month are the most influential predictors in shaping distribution patterns of this species. The projections of the ensemble SDMs also suggested that D. involucrate is very vulnerable to future climate change, with at least one-third of its suitable range expected to be lost in all future climate change scenarios and will shift to the northward of high-latitude regions. These findings suggest that it is of great urgent and significance to adaptive management strategies to mitigate the impacts of climate change on D. involucrate.


2020 ◽  
Vol 12 (1) ◽  
pp. 153-179 ◽  
Author(s):  
Malin L. Pinsky ◽  
Rebecca L. Selden ◽  
Zoë J. Kitchel

The geographic distributions of marine species are changing rapidly, with leading range edges following climate poleward, deeper, and in other directions and trailing range edges often contracting in similar directions. These shifts have their roots in fine-scale interactions between organisms and their environment—including mosaics and gradients of temperature and oxygen—mediated by physiology, behavior, evolution, dispersal, and species interactions. These shifts reassemble food webs and can have dramatic consequences. Compared with species on land, marine species are more sensitive to changing climate but have a greater capacity for colonization. These differences suggest that species cope with climate change at different spatial scales in the two realms and that range shifts across wide spatial scales are a key mechanism at sea. Additional research is needed to understand how processes interact to promote or constrain range shifts, how the dominant responses vary among species, and how the emergent communities of the future ocean will function.


Author(s):  
A. Townsend Peterson ◽  
Jorge Soberón ◽  
Richard G. Pearson ◽  
Robert P. Anderson ◽  
Enrique Martínez-Meyer ◽  
...  

This chapter discusses the use of niche models to help address the “what” and “where” questions in conservation biology as well as climate change effects. It first reviews the conceptual aspects of the “what” and “where” questions in conservation planning, focusing on topics such as inferences about extinction risk, identification of regions for species reintroductions, conservation reserve network planning, and considerations of how climate change may affect species distributions. Each of these conservation applications is then examined with respect to the conceptual framework laid out for ecological niche modeling. The chapter concludes by offering practical recommendations regarding calibration and evaluation of niche models.


Sign in / Sign up

Export Citation Format

Share Document