Coincidence of Some Magnetic and Gravity Field Characteristics

Author(s):  
G. Barta
Keyword(s):  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
M.A. Boyarchuk ◽  
I.G. Zhurkin ◽  
V.B. Nepoklonov

2019 ◽  
Vol 489 (1) ◽  
pp. 1368-1371
Author(s):  
E. I. Ryzhak ◽  
S. V. Sinyukhina
Keyword(s):  

2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Wutong Gao ◽  
Jianguo Yan ◽  
Weitong Jin ◽  
Chen Yang ◽  
Linzhi Meng ◽  
...  

2013 ◽  
Vol 833 ◽  
pp. 125-129
Author(s):  
Hao Zhang ◽  
Zhong Min Zhao ◽  
Long Zhang ◽  
Shuan Jie Wang

By introducing (CrO3+Al) high-energy thermit into (Ti+B4C) system and designing adiabatic temperature of reactive system as 3000°C,3200°C, 3400°C, 3600°C and 3800°C respectively, a series of solidified TiC-TiB2were prepared by combustion synthesis in ultrahigh gravity field with the acceleration 2000 g. XRD, FESEM and EDS results showed that the solidified TiCTiB2were composed of a number of TiB2primary platelets, irregular TiC secondary grains, and a few of isolated Al2O3inclusions and Cr-based alloy. Because of the enhanced Stokes flow in mixed melt with the increased adiabatic temperature, Al2O3droplets were promoted to float up and separate from TiC-TiB2-Me liquid while constitutional distribution became more and more uniform in TiC-TiB2-Me liquid, resulting in not only the sharply-reduced Al2O3inclusions in the solidified ceramic but also the refined microstructure and the improved homogeneity in the ceramic, and ultrafine-grained microstructure with a average thickness of TiB2platelets smaller than 1μm began to appear in near-full-density ceramic as the adiabatic temperature exceeded 3600°C, so the densification, fracture toughness and flexural strength of the ceramic were enhanced with the increased adiabatic temperature of the reactive system.


2021 ◽  
Vol 95 (3) ◽  
Author(s):  
Laura Sánchez ◽  
Jonas Ågren ◽  
Jianliang Huang ◽  
Yan Ming Wang ◽  
Jaakko Mäkinen ◽  
...  

AbstractIn 2015, the International Association of Geodesy defined the International Height Reference System (IHRS) as the conventional gravity field-related global height system. The IHRS is a geopotential reference system co-rotating with the Earth. Coordinates of points or objects close to or on the Earth’s surface are given by geopotential numbersC(P) referring to an equipotential surface defined by the conventional valueW0 = 62,636,853.4 m2 s−2, and geocentric Cartesian coordinatesXreferring to the International Terrestrial Reference System (ITRS). Current efforts concentrate on an accurate, consistent, and well-defined realisation of the IHRS to provide an international standard for the precise determination of physical coordinates worldwide. Accordingly, this study focuses on the strategy for the realisation of the IHRS; i.e. the establishment of the International Height Reference Frame (IHRF). Four main aspects are considered: (1) methods for the determination of IHRF physical coordinates; (2) standards and conventions needed to ensure consistency between the definition and the realisation of the reference system; (3) criteria for the IHRF reference network design and station selection; and (4) operational infrastructure to guarantee a reliable and long-term sustainability of the IHRF. A highlight of this work is the evaluation of different approaches for the determination and accuracy assessment of IHRF coordinates based on the existing resources, namely (1) global gravity models of high resolution, (2) precise regional gravity field modelling, and (3) vertical datum unification of the local height systems into the IHRF. After a detailed discussion of the advantages, current limitations, and possibilities of improvement in the coordinate determination using these options, we define a strategy for the establishment of the IHRF including data requirements, a set of minimum standards/conventions for the determination of potential coordinates, a first IHRF reference network configuration, and a proposal to create a component of the International Gravity Field Service (IGFS) dedicated to the maintenance and servicing of the IHRS/IHRF.


Sign in / Sign up

Export Citation Format

Share Document