ultrafine grained
Recently Published Documents


TOTAL DOCUMENTS

3307
(FIVE YEARS 431)

H-INDEX

98
(FIVE YEARS 6)

2022 ◽  
Vol 142 ◽  
pp. 107459
Author(s):  
Yuehuang Xie ◽  
Zhen Zhang ◽  
Yifei Luo ◽  
Jun Wang ◽  
Jiamiao Liang ◽  
...  

2022 ◽  
Vol 210 ◽  
pp. 114423
Author(s):  
Z.Z. Song ◽  
R.M. Niu ◽  
X.Y. Cui ◽  
E.V. Bobruk ◽  
M. Murashkin ◽  
...  

2022 ◽  
Vol 149 ◽  
pp. 103183
Author(s):  
Songjiang Lu ◽  
Qianhua Kan ◽  
Michael Zaiser ◽  
Zhenhuan Li ◽  
Guozheng Kang ◽  
...  

Author(s):  
E. V. Legostaeva ◽  
M. A. Khimich ◽  
Yu. P. Sharkeev ◽  
A. Yu. Eroshenko ◽  
O. A. Belyavskaya ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 407
Author(s):  
Katarzyna Konopka ◽  
Justyna Zygmuntowicz ◽  
Marek Krasnowski ◽  
Konrad Cymerman ◽  
Marcin Wachowski ◽  
...  

NiAl-Al2O3 composites, fabricated from the prepared composite powders by mechanical alloying and then consolidated by pulse plasma sintering, were presented. The use of nanometric alumina powder for reinforcement of a synthetized intermetallic matrix was the innovative concept of this work. Moreover, this is the first reported attempt to use the Pulse Plasma Sintering (PPS) method to consolidate composite powder with the contribution of nanometric alumina powder. The composite powders consisting of the intermetallic phase NiAl and Al2O3 were prepared by mechanical alloying from powder mixtures containing Ni-50at.%Al with the contribution of 10 wt.% or 20 wt.% nanometric aluminum oxide. A nanocrystalline NiAl matrix was formed, with uniformly distributed Al2O3 inclusions as reinforcement. The PPS method successfully consolidated NiAl-Al2O3 composite powders with limited grain growth in the NiAl matrix. The appropriate sintering temperature for composite powder was selected based on analysis of the grain growth and hardness of Al2O3 subjected to PPS consolidation at various temperatures. As a result of these tests, sintering of the NiAl-Al2O3 powders was carried out at temperatures of 1200 °C, 1300 °C, and 1400 °C. The microstructure and properties of the initial powders, composite powders, and consolidated bulk composite materials were characterized by SEM, EDS, XRD, density, and hardness measurements. The hardness of the ultrafine-grained NiAl-Al2O3 composites obtained via PPS depends on the Al2O3 content in the composite, as well as the sintering temperature applied. The highest values of the hardness of the composites were obtained after sintering at the lowest temperature (1200 °C), reaching 7.2 ± 0.29 GPa and 8.4 ± 0.07 GPa for 10 wt.% Al2O3 and 20 wt.% Al2O3, respectively, and exceeding the hardness values reported in the literature. From a technological point of view, the possibility to use sintering temperatures as low as 1200 °C is crucial for the production of fully dense, ultrafine-grained composites with high hardness.


2022 ◽  
Vol 16 (1) ◽  
pp. 95-103
Author(s):  
Masaaki Matsuzawa ◽  
Atsushi Ito ◽  
Takafumi Komatsu ◽  
Shiro Torizuka ◽  
◽  
...  

A mirror-like reflecting surface is an important characteristic in many industrial metallic parts. Polishing is done to form a mirror surface on metals. However, the effect of the grain size of metals on surface roughness through polishing processes is not clear. Specifically, mirror surface formation of ultrafine grained materials is still unknown. Ultrafine grained steels and coarse grained steels with 0.02, 0.10, and 0.60 wt% carbon contents were prepared by warm caliber rolling and annealing. Average grain sizes were 1–2 μm and 4–40 μm. The changes in surface roughness, Sa, were measured with an atomic force microscope (AFM) via eight polishing steps, using emery papers of type #600, #1000, #1500, #2000, #2500, #4000, and free abrasive grains of 3 μm and 1 μm diamond. As the polishing process progressed, the surface unevenness was removed and the surface roughness, Sa, decreased in all steels. The differences of Sa at each polishing step were analyzed from the point of carbon content, Vickers hardness, and grain size. Carbon contents and Vickers hardness have little effect on Sa. However, grain size has a considerable effect on Sa in all steels. Ultrafine grained steels have smaller Sa in all polishing steps in all steels. This is because ultrafine grained steels have very small work hardening rate. After final polishing, Sa is 2.5–3.6 nm in coarse grained steels and 2.0–2.6 nm in ultrafine grained steels. To obtain a mirror surface with smaller Sa, grain size control is important.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 360
Author(s):  
Ewa Ura-Bińczyk

The effect of aging on the resistance to pitting corrosion of ultrafine-grained 7475 aluminium (Al) alloy processed by hydrostatic extrusion (HE) is studied. Differences in the microstructure were investigated using secondary electron (SEM) and transmission electron microscopy (TEM). Corrosion tests were performed in 0.1 M NaCl, and characterization of corroded surface was performed. The results of this work show that the pitting susceptibility of ultra-fine grained 7475Al is related to the distribution of MgZn2 precipitates. After HE, the formation of An ultrafine-grained microstructure at the grain boundaries of ultrafine grains is observed, while subsequent aging results in the formation of MgZn2 precipitates in the grain interior. Grain refinement increases susceptibility to localized attack, while the subsequent aging improves the overall corrosion resistance and limits the propagation of corrosion attack.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 331
Author(s):  
Petr Kral ◽  
Jiri Dvorak ◽  
Vaclav Sklenicka ◽  
Zenji Horita ◽  
Yoichi Takizawa ◽  
...  

Sheets of coarse-grained S304H austenitic steel were processed by high-pressure sliding (HPS) at room temperature and a ultrafine-grained microstructure with a mean grain size of about 0.14 µm was prepared. The microstructure changes and creep behavior of coarse-grained and HPS-processed steel were investigated at 500–700 °C under the application of different loads. It was found that the processing of S304H steel led to a significant improvement in creep strength at 500 °C. However, a further increase in creep temperature to 600 °C and 700 °C led to the deterioration of creep behavior of HPS-processed steel. The microstructure results suggest that the creep behavior of HPS-processed steel is associated with the thermal stability of the SPD-processed microstructure. The recrystallization, grain growth, the coarsening of precipitates led to a reduction in creep strength of the HPS-processed state. It was also observed that in the HPS-processed microstructure the fast formation of σ-phase occurs. The σ-phase was already formed during slight grain coarsening at 600 °C and its formation was enhanced after recrystallization at 700 °C.


Sign in / Sign up

Export Citation Format

Share Document