Design Parameters for Offshore Sands: Use of In Situ Tests

1985 ◽  
pp. 269-292
Author(s):  
T. Lunne ◽  
S. Lacasse ◽  
G. Aas ◽  
C. Madshus
1996 ◽  
Vol 33 (1) ◽  
pp. 189-198 ◽  
Author(s):  
J A.R Ortigao ◽  
R P Cunha ◽  
L S Alves

An in situ testing programme was carried out in 1992 aimed at obtaining design parameters for the construction of the Brasília Underground line, Brazil. The top layer of soil consisted of an unsaturated and collapsible soft porous clay layer 5–30 m thick followed by residual soils from slate and interlayered metasiltsones and quartzites. A series of Marchetti dilatometer (DMT) logging tests results were comapred with Ménard pressuremeter (PMT) and horizontal plate loading (PLH) tests, as well as laboratory tests on block samples. In situ stresses, strength, and deformation parameters were obtained for the porous clay. The DMT yielded very good results: excellent repeatability, low cost, and results that agree with other in situ tests and laboratory data. Key words: porous clay, in situ testing, dilatometer, pressuremeter.


2018 ◽  
Vol 64 (4) ◽  
pp. 285-307
Author(s):  
T. Godlewski

AbstractIncreasingly complex design systems require an individual approach when determining the necessary design parameters. As soils are characterized by strong strain-dependent nonlinearity, test methods used to characterize the subsoil should be carefully selected, in terms of their “sensitivity” as well as suitability for the analyzed type of problem. When direct measurements are not available, while design calculation models require specific parameters, indirect parameter estimation may be used. This approach requires calibration and validation of empirical correlations, based on well documented database of tests and case studies. One of the parameters often used, when analyzing soil-structure interaction problems, is the shear stiffness of the soil and its strain-dependent degradation. The aim of the article is to present the procedure for description and evaluation of soil stiffness based on field tests (CPTU, DMT and SDMT) and a large number of reference curves obtained from laboratory tests (TRX) for selected soil types. On the basis of the given algorithm, it is possible to obtain a stiffness module G0 value at any level of deformation, based on in-situ tests.


2020 ◽  
pp. 65-94
Author(s):  
Michele Jamiolkowski ◽  
Diego C.F. Lo Presti ◽  
Francesco Froio

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Shuai Luan ◽  
Fenglai Wang ◽  
Tiehong Wang ◽  
Zhao Lu ◽  
Weihou Shui

Granite residual soil is widely distributed in south China and is treated as a special soil. Its design parameters in rotary drilling bored piles are a matter of debate due to lack of in-situ pile load tests. Back-analysis of test piles is a reliable means of studying the geotechnical capacity of granite residual soil for pile design. In this study, a series of in situ tests was conducted comprising six full-scale instrumented test piles in gravelly granite residual soil in Shenzhen to consider the effects of different construction methods. The six piles were constructed with three different rotary drilling methods. Two commonly used design methods were investigated in the back-analysis: the SPT and effective stress methods. The results of the loading tests and strain gauges were used to obtain the back-analyzed parameters of the ultimate shaft resistance and ultimate base resistance for gravelly granite residual soil with these two design methods.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4743
Author(s):  
Tomasz Janoszek ◽  
Zbigniew Lubosik ◽  
Lucjan Świerczek ◽  
Andrzej Walentek ◽  
Jerzy Jaroszewicz

The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the ventilation network of the Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet changes in the mixture of air and water vapor along the excavation at a distance was measured at 10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained results of in situ tests were related to the results of numerical calculations using computational fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX software. The dimensions and geometry of the excavation under investigation are presented. The authors describe the adopted assumptions and conditions for the numerical model and discuss the results of the numerical solution.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2021 ◽  
Vol 6 (7) ◽  
pp. 99
Author(s):  
Christian Overgaard Christensen ◽  
Jacob Wittrup Schmidt ◽  
Philip Skov Halding ◽  
Medha Kapoor ◽  
Per Goltermann

In proof-loading of concrete slab bridges, advanced monitoring methods are required for identification of stop criteria. In this study, Two-Dimensional Digital Image Correlation (2D DIC) is investigated as one of the governing measurement methods for crack detection and evaluation. The investigations are deemed to provide valuable information about DIC capabilities under different environmental conditions and to evaluate the capabilities in relation to stop criterion verifications. Three Overturned T-beam (OT) Reinforced Concrete (RC) slabs are used for the assessment. Of these, two are in situ strips (0.55 × 3.6 × 9.0 m) cut from a full-scale OT-slab bridge with a span of 9 m and one is a downscaled slab tested under laboratory conditions (0.37 × 1.7 × 8.4 m). The 2D DIC results includes full-field plots, investigation of the time of crack detection and monitoring of crack widths. Grey-level transformation was used for the in situ tests to ensure sufficient readability and results comparable to the laboratory test. Crack initiation for the laboratory test (with speckle pattern) and in situ tests (plain concrete surface) were detected at intervals of approximately 0.1 mm to 0.3 mm and 0.2 mm to 0.3 mm, respectively. Consequently, the paper evaluates a more qualitative approach to DIC test results, where crack indications and crack detection can be used as a stop criterion. It was furthermore identified that crack initiation was reached at high load levels, implying the importance of a target load.


Sign in / Sign up

Export Citation Format

Share Document