Fully Homomorphic Encryption Scheme with Probabilistic Encryption Based on Euler’s Theorem and Application in Cloud Computing

Author(s):  
Vinod Kumar ◽  
Rajendra Kumar ◽  
Santosh Kumar Pandey ◽  
Mansaf Alam
Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Ahmed EL-YAHYAOUI ◽  
Mohamed Dafir ECH-CHERIF EL KETTANI

Performing smart computations in a context of cloud computing and big data is highly appreciated today. It allows customers to fully benefit from cloud computing capacities (such as processing or storage) without losing confidentiality of sensitive data. Fully homomorphic encryption (FHE) is a smart category of encryption schemes that enables working with the data in its encrypted form. It permits us to preserve confidentiality of our sensible data and to benefit from cloud computing capabilities. While FHE is combined with verifiable computation, it offers efficient procedures for outsourcing computations over encrypted data to a remote, but non-trusted, cloud server. The resulting scheme is called Verifiable Fully Homomorphic Encryption (VFHE). Currently, it has been demonstrated by many existing schemes that the theory is feasible but the efficiency needs to be dramatically improved in order to make it usable for real applications. One subtle difficulty is how to efficiently handle the noise. This paper aims to introduce an efficient and symmetric verifiable FHE based on a new mathematic structure that is noise free. In our encryption scheme, the noise is constant and does not depend on homomorphic evaluation of ciphertexts. The homomorphy of our scheme is obtained from simple matrix operations (addition and multiplication). The running time of the multiplication operation of our encryption scheme in a cloud environment has an order of a few milliseconds.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Quanbo Qu ◽  
Baocang Wang ◽  
Yuan Ping ◽  
Zhili Zhang

Homomorphic encryption is widely used in the scenarios of big data and cloud computing for supporting calculations on ciphertexts without leaking plaintexts. Recently, Li et al. designed a symmetric homomorphic encryption scheme for outsourced databases. Wang et al. proposed a successful key-recovery attack on the homomorphic encryption scheme but required the adversary to know some plaintext/ciphertext pairs. In this paper, we propose a new ciphertext-only attack on the symmetric fully homomorphic encryption scheme. Our attack improves the previous Wang et al.’s attack by eliminating the assumption of known plaintext/ciphertext pairs. We show that the secret key of the user can be recovered by running lattice reduction algorithms twice. Experiments show that the attack successfully and efficiently recovers the secret key of the randomly generated instances with an overwhelming probability.


2020 ◽  
Author(s):  
Megha Kolhekar ◽  
Ashish Pandey ◽  
Ayushi Raina ◽  
Rijin Thomas ◽  
Vaibhav Tiwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document