Mathematical Model for Prediction of Compressive Strength of Normal, Standard and High Strength SCC with RCA

Author(s):  
Srinivas Vasam ◽  
K. Jaganadha Rao ◽  
M. V. Seshagiri Rao
Alloy Digest ◽  
2015 ◽  
Vol 64 (4) ◽  

Abstract This producer has pioneered the development of the -T77 temper, a high strength corrosion resistant temper for Alloy 7150 plate and extrusions. Alloy 7150-T77 provides weight savings opportunities in structure governed by static strength requirements but where "overaged" condition corrosion resistance is required. This datasheet provides information on composition, tensile properties, and compressive strength. It also includes information on corrosion resistance as well as forming. Filing Code: Al-442. Producer or source: Alcoa Mill Products Inc..


Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
1965 ◽  
Vol 14 (9) ◽  

Abstract MALLORY 53B is an economical copper alloy combining high strength with high heat and electrical conductivity and excellent corrosion resistance. It is heat treatable. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Cu-155. Producer or source: P. R. Mallory & Company Inc..


Alloy Digest ◽  
1960 ◽  
Vol 9 (3) ◽  

Abstract ELEKTRON AZM is a magnesium extrusion alloy having a high strength level. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Mg-45. Producer or source: Magnesium Elektron Ltd.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Meehanite GB300 is a pearlitic gray cast iron that has a minimum tensile strength of 300 MPa (44 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This grade exhibits high strength while still maintaining good thermal conductivity and good machinability. It is generally used for applications where the thermal conductivity requirements preclude the use of other higher-strength materials, such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-75. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1970 ◽  
Vol 19 (2) ◽  

Abstract ALLEGHENY ALMAR-362 is an age-hardenable martensitic stainless steel recommended for applications requiring high strength and good corrosion resistance, such as aircraft and missile structures, hydraulic and pneumatic equipment components, and in the chemical processing industry. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-234. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1975 ◽  
Vol 24 (1) ◽  

Abstract FORMALOY is a high-strength, high-purity zinc-base alloy with excellent performance in dies for forming sheet metal. It has a fine, dense grain structure which contributes markedly to its good toughness, excellent machinability and ability to develop a high polish. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Zn-17. Producer or source: Federated Metals Corporation, ASARCO Inc..


2013 ◽  
Vol 864-867 ◽  
pp. 1923-1928
Author(s):  
Yue Xu ◽  
Jian Xi Li ◽  
Li Li Kan

A new kind of high strength cementitious material is made from phosphogypsum (PG), active carbon and fly-ash. Through the orthogonal research, it was showed that the calcination temperature, retention time, dosage of active carbon and fly ash on the compressive strength of cementitious binder are the most important. The result also showed that, in the conditions of temperature 1200°C, time retention 30 min, dosage of active carbon 10%, dosage of fly ash 5%, the compressive strength of the cementitious material for 3d and 28d could reach to 46.35MPa and 92.70MPa, the content of sulfur trioxide was 11.60% accordingly. A lot of active mineral materials, such as dicalcium silicate, tricalcium silicate, tricalcium aluminate were formed in the calcination. The C-S-H gel, calcium hydroxide and ettringite were found in 3d and 28d hydrates. It is found that the lime saturation ratio and silica modulus need to be control between 0.40~0.65 and 4~8 in order to produce high strength cementitious material.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4223
Author(s):  
Po-Sung Chen ◽  
Yu-Chin Liao ◽  
Yen-Ting Lin ◽  
Pei-Hua Tsai ◽  
Jason S. C. Jang ◽  
...  

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50–Ti–Cr–Mn–V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.


Sign in / Sign up

Export Citation Format

Share Document