Suitability of Iron Oxide-Rich Industrial Waste Material in Clay Soil as a Landfill Liner

Author(s):  
Rosmy Cheriyan ◽  
S. Chandrakaran
2020 ◽  
Vol 20 (12) ◽  
pp. 1568-1595
Author(s):  
Shaik Inayath Basha ◽  
Abdul Aziz ◽  
M. Maslehuddin ◽  
Shamsad Ahmad ◽  
Abbas Saeed Hakeem ◽  
...  

Author(s):  
Ashish Shukla ◽  
Nakul Gupta ◽  
Ankur gupta ◽  
Rajesh Goel ◽  
Sanjeev Kumar

2014 ◽  
Vol 4 (4) ◽  
Author(s):  
Mariusz Ksia̧żek

AbstractThis paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.


RSC Advances ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 3941-3948 ◽  
Author(s):  
Ivan Andjelkovic ◽  
Sara Azari ◽  
Mason Erkelens ◽  
Peter Forward ◽  
Martin F. Lambert ◽  
...  

Biofilm waste material generated by the bacteria in the groundwater pipelines was found is composed of amorphous twisted iron-oxide nanowires which are shown to have considerable adsorption properties for removal As(iii) and As(v) ions from waters.


Author(s):  
Kalpana Patel ◽  
Adarsh Patel

Excessive use of materials, leads to industrialization, which has an adverse impact on the environment. From industries, large amount of chemicals or other suspended particles as a waste are produced, which are mostly dumped that acquires large space leading to deterioration of soil properties. So, we should use these waste for some constructive or useful purposes. As steel industry releases waste with some good engineering properties so, we can use this type of waste with soil which has low strength and does not have good engineering properties. Various techniques are available like soil stabilization, providing reinforcement etc. to improve load bearing capacity of soil. Soil stabilization is one of the modification techniques used to improve the geotechnical properties of soil and has become the major practice in construction engineering which enables the effective utilization of industrial wastes as a stabilizer. This technique becomes more popular because of its easy availability and adaptability. In this study, the steel slag (an industrial waste) is mixed with Clay(CI), Lateritic(A-7-6(5)) , Black cotton clay soil to enhance its strength properties and make them more suitable for use. In this way industrial waste can be reduced economically.


Author(s):  
Harshit Sangtani ◽  
Bhavini Jain ◽  
K Narayana Shenoy

In the present research an attempt has been made to replace some part of fine aggregate (sand) by an industrial waste, the industrial waste under investigation is produced when the PVC pipes are cut into the desired sizes, it is a very thin flaky substance having a specific gravity of 1.5.This material is very voluminous in nature, so it reduces the workability of concrete if used in large percentage. So this material cannot be used in very large quantities but it can successfully replace sand up to 20 percent when used in pavement blocks. Experimentation was done at a water-cement ratio ranging from 0.43-0.35.Compressive strength of the concrete has been evaluated at 7 days, 14 days 21 days and 28 days. Results of the investigation indicate that compressive strength of the concrete decreases as the percentage of PVC waste material increases.7 day strength of the concrete has varied from 35.55 MPa to 70.01 MPa and 28 day strength has varied from 56.7 MPa to 76 MPa. Water absorption was well within the limits and varied from 4.67% to 7.26% by mass. The results revealed that this waste material can satisfactorily replace sand in small amount also it is a great way to dispose of the waste and hence is a step forward in the quest for a greener concrete.


Sign in / Sign up

Export Citation Format

Share Document