Bearing Fault Diagnosis Method Based on Vision Measurement and Convolutional Neural Network

2021 ◽  
pp. 5429-5437
Author(s):  
Shan Chao ◽  
Cong Peng
Measurement ◽  
2021 ◽  
Vol 176 ◽  
pp. 109088
Author(s):  
Jing Zhao ◽  
Shaopu Yang ◽  
Qiang Li ◽  
Yongqiang Liu ◽  
Xiaohui Gu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7319
Author(s):  
Jiajun He ◽  
Ping Wu ◽  
Yizhi Tong ◽  
Xujie Zhang ◽  
Meizhen Lei ◽  
...  

Bearings are the key and important components of rotating machinery. Effective bearing fault diagnosis can ensure operation safety and reduce maintenance costs. This paper aims to develop a novel bearing fault diagnosis method via an improved multi-scale convolutional neural network (IMSCNN). In traditional convolutional neural network (CNN), a fixed convolutional kernel is often employed in the convolutional layer. Thus, informative features can not be fully extracted for fault diagnosis. In the proposed IMSCNN, a 1D dimensional convolutional layer is used to mitigate the effect of noise contained in vibration signals. Then, four dilated convolutional kernels with different dilation rates are integrated to extract multi-scale features through the inception structure. Experimental results from the popular CWRU and PU datasets show the superiority of the proposed method by comparison with other related methods.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1088 ◽  
Author(s):  
Gaowei Xu ◽  
Min Liu ◽  
Zhuofu Jiang ◽  
Dirk Söffker ◽  
Weiming Shen

Recently, research on data-driven bearing fault diagnosis methods has attracted increasing attention due to the availability of massive condition monitoring data. However, most existing methods still have difficulties in learning representative features from the raw data. In addition, they assume that the feature distribution of training data in source domain is the same as that of testing data in target domain, which is invalid in many real-world bearing fault diagnosis problems. Since deep learning has the automatic feature extraction ability and ensemble learning can improve the accuracy and generalization performance of classifiers, this paper proposes a novel bearing fault diagnosis method based on deep convolutional neural network (CNN) and random forest (RF) ensemble learning. Firstly, time domain vibration signals are converted into two dimensional (2D) gray-scale images containing abundant fault information by continuous wavelet transform (CWT). Secondly, a CNN model based on LeNet-5 is built to automatically extract multi-level features that are sensitive to the detection of faults from the images. Finally, the multi-level features containing both local and global information are utilized to diagnose bearing faults by the ensemble of multiple RF classifiers. In particular, low-level features containing local characteristics and accurate details in the hidden layers are combined to improve the diagnostic performance. The effectiveness of the proposed method is validated by two sets of bearing data collected from reliance electric motor and rolling mill, respectively. The experimental results indicate that the proposed method achieves high accuracy in bearing fault diagnosis under complex operational conditions and is superior to traditional methods and standard deep learning methods.


Sign in / Sign up

Export Citation Format

Share Document