On the Comparison of Static and Dynamic Metrics Toward Fault-Proneness Prediction

Author(s):  
Navneet Kaur ◽  
Hardeep Singh
2021 ◽  
Vol 30 (3) ◽  
pp. 1-56
Author(s):  
Mouna Abidi ◽  
Md Saidur Rahman ◽  
Moses Openja ◽  
Foutse Khomh

Nowadays, modern applications are developed using components written in different programming languages and technologies. The cost benefits of reuse and the advantages of each programming language are two main incentives behind the proliferation of such systems. However, as the number of languages increases, so do the challenges related to the development and maintenance of these systems. In such situations, developers may introduce design smells (i.e., anti-patterns and code smells) which are symptoms of poor design and implementation choices. Design smells are defined as poor design and coding choices that can negatively impact the quality of a software program despite satisfying functional requirements. Studies on mono-language systems suggest that the presence of design smells may indicate a higher risk of future bugs and affects code comprehension, thus making systems harder to maintain. However, the impact of multi-language design smells on software quality such as fault-proneness is yet to be investigated. In this article, we present an approach to detect multi-language design smells in the context of JNI systems. We then investigate the prevalence of those design smells and their impacts on fault-proneness. Specifically, we detect 15 design smells in 98 releases of 9 open-source JNI projects. Our results show that the design smells are prevalent in the selected projects and persist throughout the releases of the systems. We observe that, in the analyzed systems, 33.95% of the files involving communications between Java and C/C++ contain occurrences of multi-language design smells. Some kinds of smells are more prevalent than others, e.g., Unused Parameters , Too Much Scattering , and Unused Method Declaration . Our results suggest that files with multi-language design smells can often be more associated with bugs than files without these smells, and that specific smells are more correlated to fault-proneness than others. From analyzing fault-inducing commit messages, we also extracted activities that are more likely to introduce bugs in smelly files. We believe that our findings are important for practitioners as it can help them prioritize design smells during the maintenance of multi-language systems.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3143 ◽  
Author(s):  
Ignacio Acosta ◽  
Miguel Ángel Campano ◽  
Samuel Domínguez-Amarillo ◽  
Carmen Muñoz

Daylight performance metrics provide a promising approach for the design and optimization of lighting strategies in buildings and their management. Smart controls for electric lighting can reduce power consumption and promote visual comfort using different control strategies, based on affordable technologies and low building impact. The aim of this research is to assess the energy efficiency of these smart controls by means of dynamic daylight performance metrics, to determine suitable solutions based on the geometry of the architecture and the weather conditions. The analysis considers different room dimensions, with variable window size and two mean surface reflectance values. DaySim 3.1 lighting software provides the simulations for the study, determining the necessary quantification of dynamic metrics to evaluate the usefulness of the proposed smart controls and their impact on energy efficiency. The validation of dynamic metrics is carried out by monitoring a mesh of illuminance-meters in test cells throughout one year. The results showed that, for most rooms more than 3.00 m deep, smart controls achieve worthwhile energy savings and a low payback period, regardless of weather conditions and for worst-case situations. It is also concluded that dimming systems provide a higher net present value and allow the use of smaller window size than other control solutions.


2021 ◽  
Vol 22 (7) ◽  
pp. 530-535
Author(s):  
Kathleen D. Klinich ◽  
Miriam A. Manary ◽  
Kyle J. Boyle ◽  
Nichole R. Orton
Keyword(s):  

Author(s):  
Rajvir Singh ◽  
Anita Singhrova ◽  
Rajesh Bhatia

Detection of fault proneness classes helps software testers to generate effective class level test cases. In this article, a novel technique is presented for an optimized test case generation for ant-1.7 open source software. Class level object oriented (OO) metrics are considered as effective means to find fault proneness classes. The open source software ant-1.7 is considered for the evaluation of proposed techniques as a case study. The proposed mathematical model is the first of its kind generated using Weka open source software to select effective OO metrics. Effective and ineffective OO metrics are identified using feature selection techniques for generating test cases to cover fault proneness classes. In this methodology, only effective metrics are considered for assigning weights to test paths. The results indicate that the proposed methodology is effective and efficient as the average fault exposition potential of generated test cases is 90.16% and test cases execution time saving is 45.11%.


Sign in / Sign up

Export Citation Format

Share Document