Experimental Investigations and Optimization of WEDM Parameters Using Taguchi Analysis of Pure Titanium

Author(s):  
Rakesh Chaudhari ◽  
Hem Shah ◽  
Izaro Ayesta ◽  
L. N. López de Lacalle ◽  
Jay Vora
2020 ◽  
Vol 321 ◽  
pp. 11034
Author(s):  
J.D. Beguin ◽  
Y. Balcaen ◽  
J. Alexis ◽  
E. Andrieu

The purpose of this study is to apply a local heat treatment (LHT), in-situ, on the weld bead, using a defocused Yb: YAG laser beam on a continuous regime, in order to reduce residual stresses and decompose the brittle a’ martensite, into a lamellae and fine β phase. Laser scan experiments were firstly performed on a commercially pure titanium grade 2, with a wide range of parameters, in order to provide a “heat treatment window” without titanium melting. After optimization of the processing parameters, to obtain a sufficient width and depth for the scanning zone, experiments have been performed on a β-treated, fully martensitic Ti-6Al-4V sheet. For each processing experiments, the decomposition of a’, was studied based on metallographic cross sections. A local heating with a minimum energy density at 700 J.cm-2, has a sufficient effect to destabilize a’, while for an energy density at 1000 J.cm-2 , a diffusional transformation take place, with the formation of Widmanstätten microstructure. Finally, these optimized conditions were applied on a full penetration Ti-6Al-4V welds. The results of the LHT will be described in terms of the microstructural changes observed in the welded zone and hardness evolution.


Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


Author(s):  
D.M. Vanderwalker

There is a fundamental interest in electrochemical fusion of deuterium in palladium and titanium since its supposed discovery by Fleischmann and Pons. Their calorimetric experiments reveal that a large quantity of heat is released by Pd after hours in a cell, suggesting fusion occurs. They cannot explain fusion by force arguments, nor can it be an exothermic reaction on the formation of deuterides because a smaller quantity of heat is released. This study examines reactions of deuterium in titanium.Both iodide titanium and 99% pure titanium samples were encapsulated in vacuum tubes, annealed for 2h at 800 °C. The Ti foils were charged with deuterium in a D2SO4 D2O solution at a potential of .45V with respect to a calomel reference junction. Samples were ion beam thinned for transmission electron microscopy. The TEM was performed on the JEOL 200CX.The structure of D charged titanium is α-Ti with hexagonal and fee deuterides.


2000 ◽  
Vol 21 (3) ◽  
pp. 322-328 ◽  
Author(s):  
T ZAHNERT ◽  
K HUTTENBRINK ◽  
D MURBE ◽  
M BORNITZ

1987 ◽  
Vol 48 (C5) ◽  
pp. C5-183-C5-186
Author(s):  
J. BLEUSE ◽  
P. VOISIN ◽  
M. VOOS ◽  
L. L. CHANG ◽  
L. ESAKI

2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


Sign in / Sign up

Export Citation Format

Share Document