Influence of Different Tool Profiles and Process Parameters on Mechanical Properties of Dissimilar AA6061 and AA7075 Aluminium Alloys by Friction Stir Welding

Author(s):  
Rajeev Rana ◽  
D. B. Karunakar ◽  
Anish Karmakar
2010 ◽  
Vol 638-642 ◽  
pp. 1179-1184 ◽  
Author(s):  
Philip L. Threadgill ◽  
M.M.Z. Ahmed ◽  
Jonathan P. Martin ◽  
Jonathan G. Perrett ◽  
Bradley P. Wynne

The use of a double sided friction stir welding tool (known as a bobbin tool) has the advantage of giving a processed zone in the workpiece which is more or less rectangular in cross section, as opposed the triangular zone which is more typically found when conventional friction stir welding tool designs are used. In addition, the net axial force on the workpiece is almost zero, which has significant beneficial implications in machine design and cost. However, the response of these tools in generating fine microstructures in the nugget area has not been established. The paper presents detailed metallographic analyses of microstructures produced in 25mm AA6082-T6 aluminium wrought alloy, and examines grain size, texture and mechanical properties as a function of processing parameters and tool design, and offers comparison with data from welds made with conventional tools.


Author(s):  
Sipokazi Mabuwa ◽  
Velaphi Msomi

The use of aluminium alloys continues to grow in many applications to mention a few aerospace, automotive, electronics, electricity, construction and food packaging. With so much demand there is a new interest in welding of dissimilar aluminium alloys. Some of the welding techniques used to join dissimilar aluminium alloys include friction stir welding and TIG welding. The welding of dissimilar alloys affects the mechanical properties negatively due to porosity and cracking during the welding. This then suggests that there should be a process which can be used to improve the dissimilar alloys mechanical properties post its production. Friction stir processing was found to be one of the mechanical techniques that could be used to improve the mechanical properties of the material. This paper reports on the literature on the friction stir welding, TIG welding and friction stir processing techniques published so far, with the aim to identify the gap in the use of friction stir process as a post processing technique of the weld joints.


Sign in / Sign up

Export Citation Format

Share Document