Physical map and gene localization on sunflower (Helianthus annuus) chloroplast DNA: evidence for an inversion of a 23.5-kbp segment in the large single copy region

1987 ◽  
Vol 9 (5) ◽  
pp. 485-496 ◽  
Author(s):  
Fran�oise Heyraud ◽  
Pascale Serror ◽  
Marcel Kuntz ◽  
Andr� Steinmetz ◽  
Philippe Heizmann
2018 ◽  
Author(s):  
Pritesh P. Bhatt ◽  
Vrinda S. Thaker

AbstractPlastome studies have been the focus of research in plant molecular evolution and systematics.C. creticaL. (Convolvulaceae) is a halophyte, habitat in the ecologically challenged area with high salinity and drought. The complete physical map of plastome revealed that it is 141,419bp long, circular molecule. It contains typical quadripartite structure of large single copy region (LSC 94,808bp), small single copy region (SSC 32,527bp) separated by a pair of inverted repeat regions (IRs 7042bp). This plastome is compared with the complete plastomes of other members of Convolvulaceae showed notable distinctions. An exceptional shift in IRs to SC regions is experienced inC. creticaled to many genes shift in both SC regions and contraction in IRs. The size of IRs reduced to 2 to 4 times as compared to those of the Convolvulaceae members studied. The shifted IRs regions showed remarkable variation in nucleotides patterns. Further, the shift was from the IR boundaries and in between the IR regions led to segment IRs. It is concluded that the shift in IRs may be the strategic move for adaptation in the harsh environment.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 525-538
Author(s):  
Chris Mackenzie ◽  
Adrian E Simmons ◽  
Samuel Kaplan

Abstract The existence of multiple chromosomes in bacteria has been known for some time. Yet the extent of functional solidarity between different chromosomes remains unknown. To examine this question, we have surveyed the well-described genes of the tryptophan biosynthetic pathway in the multichromosomal photosynthetic eubacterium Rhodobacter sphaeroides 2.4.1. The genome of this organism was mutagenized using Tn5, and strains that were auxotrophic for tryptophan (Trp-) were isolated. Pulsed-field gel mapping indicated that Tn5 insertions in both the large (3 Mb CI) and the small (0.9 Mb CII) chromosomes created a Trp- phenotype. Sequencing the DNA flanking the sites of the Tn5 insertions indicated that the genes trpE-yibQ-trpGDC were at a locus on CI, while genes trpF-aroR-trpB were at locus on CII. Unexpectedly, trpA was not found downstream of trpB. Instead, it was placed on the CI physical map at a locus 1.23 Mb away from trpE-yibQ-trpGDC. To relate the context of the R. sphaeroides trp genes to those of other bacteria, the DNA regions surrounding the trp genes on both chromosomes were sequenced. Of particular significance was the finding that rpsA1, which encodes ribosomal protein S1, and cmkA, which encodes cytidylate monophosphate kinase, were on CII. These genes are considered essential for translation and chromosome replication, respectively. Southern blotting suggested that the trp genes and rpsA1 exist in single copy within the genome. To date, this topological organization of the trp “operon” is unique within a bacterial genome. When taken with the finding that CII encodes essential housekeeping functions, the overall impression is one of close regulatory and functional integration between these chromosomes.


2021 ◽  
Vol 38 ◽  
pp. 00107
Author(s):  
Tahir Samigullin ◽  
Carmen Vallejo-Roman ◽  
Galina Degtjareva ◽  
Elena Terentieva

Apiaceae belong to angiosperm families with frequent plastome structural rearrangements, some of which are generally regarded as synapomorphic for large clades, although typically with limited taxon sampling. Our study aims to improve understanding of the structural rearrangements in plastome within the Tordylieae tribe (ApiaceaeApioideae) with a dense sampling scheme of its species. We showed that presence of psbA pseudogene in inverted repeats near the border with a large single-copy region, which is found in the Tordylieae tribe, may be a clade-specific synapomorphy.


2019 ◽  
Author(s):  
Weiwen Wang ◽  
Robert Lanfear

AbstractThe chloroplast genome usually has a quadripartite structure consisting of a large single copy region and a small single copy region separated by two long inverted repeats. It has been known for some time that a single cell may contain at least two structural haplotypes of this structure, which differ in the relative orientation of the single copy regions. However, the methods required to detect and measure the abundance of the structural haplotypes are labour-intensive, and this phenomenon remains understudied. Here we develop a new method, Cp-hap, to detect all possible structural haplotypes of chloroplast genomes of quadripartite structure using long-read sequencing data. We use this method to conduct a systematic analysis and quantification of chloroplast structural haplotypes in 61 land plant species across 19 orders of Angiosperms, Gymnosperms and Pteridophytes. Our results show that there are two chloroplast structural haplotypes which occur with equal frequency in most land plant individuals. Nevertheless, species whose chloroplast genomes lack inverted repeats or have short inverted repeats have just a single structural haplotype. We also show that the relative abundance of the two structural haplotypes remains constant across multiple samples from a single individual plant, suggesting that the process which maintains equal frequency of the two haplotypes operates rapidly, consistent with the hypothesis that flip-flop recombination mediates chloroplast structural heteroplasmy. Our results suggest that previous claims of differences in chloroplast genome structure between species may need to be revisited.Significance StatementChloroplast genome consists of a large single copy region, a small single copy region, and two inverted repeats. Some decades ago, a discovery showed that there are two types chloroplast genome in some plants, which differ the way that the four regions are put together. However, this phenomenon has been shown in just a small number of species, and many open questions remain. Here, we develop a fast method to measure the chloroplast genome structures, based on long-reads. We show that almost all plants we analysed contain two possible genome structures, while a few plants contain only one structure. Our findings hint at the causes of the phenomenon, and provide a convenient new method with which to make rapid progress.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 199 ◽  
Author(s):  
Arif Khan ◽  
Sajjad Asaf ◽  
Abdul Latif Khan ◽  
Tariq Shehzad ◽  
Ahmed Al-Rawahi ◽  
...  

Euphorbia is one of the largest genera in the Euphorbiaceae family, comprising 2000 species possessing commercial, medicinal, and ornamental importance. However, there are very little data available on their molecular phylogeny and genomics, and uncertainties still exist at a taxonomic level. Herein, we sequence the complete chloroplast (cp) genomes of two species, E. larica and E. smithii, of the genus Euphorbia through next-generation sequencing and perform a comparative analysis with nine related genomes in the family. The results revealed that the cp genomes had similar quadripartite structure, gene content, and genome organization with previously reported genomes from the same family. The size of cp genomes ranged from 162,172 to 162,358 bp with 132 and 133 genes, 8 rRNAs, 39 tRNA in E. smithii and E. larica, respectively. The numbers of protein-coding genes were 85 and 86, with each containing 19 introns. The four-junction regions were studied and results reveal that rps19 was present at JLB (large single copy region and inverted repeat b junction) in E. larica where its complete presence was located in the IRb (inverted repeat b) region in E. smithii. The sequence comparison revealed that highly divergent regions in rpoC1, rpocB, ycf3, clpP, petD, ycf1, and ndhF of the cp genomes might provide better understanding of phylogenetic inferences in the Euphorbiaceae and order Malpighiales. Phylogenetic analyses of this study illustrate sister clades of E. smithii with E. tricullii and these species form a monophyletic clade with E. larica. The current study might help us to understand the genome architecture, genetic diversity among populations, and evolutionary depiction in the genera.


Sign in / Sign up

Export Citation Format

Share Document