sequence variation
Recently Published Documents


TOTAL DOCUMENTS

2071
(FIVE YEARS 213)

H-INDEX

95
(FIVE YEARS 8)

Mitochondrion ◽  
2022 ◽  
Author(s):  
Claudine M. Samanic ◽  
Jamie K. Teer ◽  
Zachary J. Thompson ◽  
Jordan H. Creed ◽  
Brooke L. Fridley ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chao Tang ◽  
Ling Luo ◽  
Yu Xu ◽  
Guobin Chen ◽  
Li Tang ◽  
...  

With the rapid development of DNA high-throughput testing technology, there is a high correlation between DNA sequence variation and human diseases, and detecting whether there is variation in DNA sequence has become a hot research topic at present. DNA sequence variation is relatively rare, and the establishment of DNA sequence sparse matrix, which can quickly detect and reason fusion variation point, has become an important work of tumor gene testing. Because there are differences between the current comparison software and mutation detection software in detecting the same sample, there are errors between the results of derivative sequence comparison and the detection of mutation. In this paper, SNP and InDel detection methods based on machine learning and sparse matrix detection are proposed, and VarScan 2, Genome Analysis Toolkit (GATK), BCFtools, and FreeBayes are compared. In the research of SNP and InDel detection with intelligent reasoning, the experimental results show that the detection accuracy and recall rate are better when the depth is increasing. The reasoning fusion method proposed in this paper has certain advantages in comparison effect and discovery in SNP and InDel and has good effect on swelling and pain gene detection.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Renata Orłowska ◽  
Katarzyna Anna Pachota ◽  
Piotr Androsiuk ◽  
Piotr Tomasz Bednarek

Metal ions in the induction medium are essential ingredients allowing green plant regeneration. For instance, Cu(II) and Ag(I) ions may affect the mitochondrial electron transport chain, influencing the Yang cycle and synthesis of S-adenosyl-L-methionine, the prominent donor of the methylation group for all cellular compounds, including cytosines. If the ion concentrations are not balanced, they can interfere with the proper flow of electrons in the respiratory chain and ATP production. Under oxidative stress, methylated cytosines might be subjected to mutations impacting green plant regeneration efficiency. Varying Cu(II) and Ag(I) concentrations in the induction medium and time of anther culture, nine trials of anther culture-derived regenerants of triticale were derived. The methylation-sensitive AFLP approach quantitative characteristics of tissue culture-induced variation, including sequence variation, DNA demethylation, and DNA de novo methylation for all symmetric-CG, CHG, and asymmetric-CHH sequence contexts, were evaluated for all trials. In addition, the implementation of mediation analysis allowed evaluating relationships between factors influencing green plant regeneration efficiency. It was demonstrated that Cu(II) ions mediated relationships between: (1) de novo methylation in the CHH context and sequence variation in the CHH, (2) sequence variation in CHH and green plant regeneration efficiency, (3) de novo methylation in CHH sequences and green plant regeneration, (4) between sequence variation in the CHG context, and green plant regeneration efficiency. Cu(II) ions were not a mediator between de novo methylation in the CG context and green plant regeneration. The latter relationship was mediated by sequence variation in the CG context. On the other hand, we failed to identify any mediating action of Ag(I) ions or the moderating role of time. Furthermore, demethylation in any sequence context seems not to participate in any relationships leading to green plant regeneration, sequence variation, and the involvement of Cu(II) or Ag(I) as mediators.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Paul J. Farrell ◽  
Robert E. White

Most of the world’s population is infected by the Epstein–Barr virus (EBV), but the incidence of the diseases associated with EBV infection differs greatly in different parts of the world. Many factors may determine those differences, but variation in the virus genome is likely to be a contributing factor for some of the diseases. Here, we describe the main forms of EBV genome sequence variation, and the mechanisms by which variations in the virus genome are likely to contribute to disease. EBV genome deletions or polymorphisms can also provide useful markers for monitoring disease. If some EBV strains prove to be more pathogenic than others, this suggests the possible value of immunising people against infection by those pathogenic strains.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Rafał Kolenda ◽  
Katarzyna Sidorczuk ◽  
Mateusz Noszka ◽  
Adrianna Aleksandrowicz ◽  
Muhammad Moman Khan ◽  
...  

Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli . Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.


2021 ◽  
Author(s):  
Marty G. Yang ◽  
Emi Ling ◽  
Christopher J. Cowley ◽  
Michael E. Greenberg ◽  
Thomas Vierbuchen

Sequence variation in enhancers, a class of cis-regulatory elements that control cell type-specific gene transcription, contributes significantly to phenotypic variation within human populations. Enhancers are short DNA sequences (~200 bp) composed of multiple binding sites (4-10 bp) for transcription factors (TFs). The transcriptional regulatory activity of an enhancer is encoded by the type, number, and distribution of TF binding sites that it contains. However, the sequence determinants of TF binding to enhancers and the relationship between TF binding and enhancer activity are complex, and thus it remains difficult to predict the effect of any given sequence variant on enhancer function. Here, we generate allele-specific maps of TF binding and enhancer activity in fibroblasts from a panel of F1 hybrid mice that have a high frequency of sequence variants. We identified thousands of enhancers that exhibit differences in TF binding and/or activity between alleles and use these data to define features of sequence variants that are most likely to impact enhancer function. Our data demonstrate a critical role for AP-1 TFs at many fibroblast enhancers, reveal a hierarchical relationship between AP-1 and TEAD TF binding at enhancers, and delineate the nature of sequence variants that contribute to AP-1 TF binding. These data represent one of the most comprehensive assessments to date of the impact of sequence variation on enhancer function in chromatin, with implications for identifying functional cis-regulatory variation in human populations.


2021 ◽  
Author(s):  
Fruzsina Hobor ◽  
Zsofia Hegedus ◽  
Amaurys Avila Ibarra ◽  
Vencel L. Petrovicz ◽  
Gail J. Bartlett ◽  
...  

The hypoxic response is central to cell function and plays a significant role in the growth and survival of solid tumours. HIF-1 regulates the hypoxic response by activating over 100 genes responsible for adaptation to hypoxia, making it a potential target for anticancer drug discovery. Although there is significant structural and mechanistic understanding of the interaction between HIF-1α and p300 alongside negative regulators of HIF-1α such as CITED2, there remains a need to further understand the sequence determinants of binding. In this work we use a combination of protein expression, chemical synthesis, fluorescence anisotropy and isothermal titration calorimetry for HIF-1α sequence variants and a HIF-1α- CITED hybrid sequence which we term CITIF. We show the HIF-1α sequence is highly tolerant to sequence variation through reduced enthalpic and less unfavourable entropic contributions, These data imply backbone as opposed to side chain interactions and ligand folding control the binding interaction and that sequence variations are tolerated as a result of adopting a more disordered bound interaction or fuzzy complex.


2021 ◽  
Author(s):  
Kun Zhang ◽  
Mei Yuan ◽  
Han Xia ◽  
Liangqiong He ◽  
Jing Ma ◽  
...  

Abstract Testa color is an important trait of peanut (Arachis hypogaea L.). Peanuts with red testa are rich in anthocyanin, are very popular with consumers. However, genes responsible for the red testa trait in peanut are rarely reported. In order to fine map red testa gene, two F4 populations were constructed through the cross of YZ9102 (pink testa) with ZH12 (red testa) and Zhanhong2 (red testa). Genetic analysis indicated that red testa was controlled by a single recessive gene, and named as AhRt2 (Red testa gene 2). Using BSA-seq approach, AhRt2 was preliminary identified in chromosome 12, and further mapped to a 530-kb interval using 220 recombinant lines through linkage mapping. Functional annotation, expression profiling, and sequence variation analyses confirmed that the anthocyanin reductase (ANR), Arahy.IK60LM, was the most likely candidate gene for AhRt2. A SNP in the third exon of AhRt2 changed the encoding amino acids, was associated with red testa of peanut. In addition, a closely linkaged molecular marker to red testa trait was developed. Our result provide insight into the molecular mechanism underlying peanut testa color and provide valuable diagnostic marker for marker-assisted selected (MAS) breeding in peanut.


Author(s):  
Arman A. Bashirova ◽  
Wanjing Zheng ◽  
Marjan Akdag ◽  
Danillo G. Augusto ◽  
Nicolas Vince ◽  
...  

AbstractHuman immunoglobulin G (IgG) molecules, IgG1, IgG2 and IgG3, exhibit substantial inter-individual variation in their constant heavy chain regions, as discovered by serological methods. This polymorphism is encoded by the IGHG1, IGHG2, and IGHG3 genes and may influence antibody function. We sequenced the coding fragments of these genes in 95 European Americans, 94 African Americans, and 94 Black South Africans. Striking differences were observed between the population groups, including extremely low amino acid sequence variation in IGHG1 among South Africans, and higher IGHG2 and IGHG3 diversity in individuals of African descent compared to individuals of European descent. Molecular definition of the loci illustrates a greater level of allelic polymorphism than previously described, including the presence of common IGHG2 and IGHG3 variants that were indistinguishable serologically. Comparison of our data with the 1000 Genome Project sequences indicates overall agreement between the datasets, although some inaccuracies in the 1000 Genomes Project are likely. These data represent the most comprehensive analysis of IGHG polymorphisms across major populations, which can now be applied to deciphering their functional impact.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hirak Ranjan Dash ◽  
Kamlesh Kaitholia ◽  
R. K. Kumawat ◽  
Anil Kumar Singh ◽  
Pankaj Shrivastava ◽  
...  

AbstractCapillary electrophoresis-based analysis does not reflect the exact allele number variation at the STR loci due to the non-availability of the data on sequence variation in the repeat region and the SNPs in flanking regions. Herein, this study reports the length-based and sequence-based allelic data of 138 central Indian individuals at 31 autosomal STR loci by NGS. The sequence data at each allele was compared to the reference hg19 sequence. The length-based allelic results were found in concordance with the CE-based results. 20 out of 31 autosomal STR loci showed an increase in the number of alleles by the presence of sequence variation and/or SNPs in the flanking regions. The highest gain in the heterozygosity and allele numbers was observed in D5S2800, D1S1656, D16S539, D5S818, and vWA. rs25768 (A/G) at D5S818 was found to be the most frequent SNP in the studied population. Allele no. 15 of D3S1358, allele no. 19 of D2S1338, and allele no. 22 of D12S391 showed 5 isoalleles each with the same size and with different intervening sequences. Length-based determination of the alleles showed Penta E to be the most useful marker in the central Indian population among 31 STRs studied; however, sequence-based analysis advocated D2S1338 to be the most useful marker in terms of various forensic parameters. Population genetics analysis showed a shared genetic ancestry of the studied population with other Indian populations. This first-ever study to the best of our knowledge on sequence-based STR analysis in the central Indian population is expected to prove the use of NGS in forensic case-work and in forensic DNA laboratories.


Sign in / Sign up

Export Citation Format

Share Document