Sequence analysis of the complete S genomic segment of a newly identified hantavirus isolated from the white-footed mouse (Peromyscus leucopus): Phylogenetic relationship with other sigmodontine rodent-borne hantaviruses

Virus Genes ◽  
1996 ◽  
Vol 12 (3) ◽  
Author(s):  
Jin-Won Song ◽  
LuckJu Baek ◽  
IrinaN. Gavrilovskaya ◽  
ErichR. Mackow ◽  
Brian Hjelle ◽  
...  
1984 ◽  
Vol 51 (1) ◽  
pp. 97-101 ◽  
Author(s):  
G W Both ◽  
L J Siegman ◽  
A R Bellamy ◽  
N Ikegami ◽  
A J Shatkin ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Marcos Godoy ◽  
Daniel A. Medina ◽  
Rudy Suarez ◽  
Sandro Valenzuela ◽  
Jaime Romero ◽  
...  

Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with 10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly understood. The aim of this study was to describe the molecular phylogeny of PRV based on an extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments. In addition, subgenotype classifications were assigned to previously published unclassified sequences. It was concluded that the phylogenetic trees are consistent with the original classification using the PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can be used to enhance research on the virulence of PRV.


1978 ◽  
Vol 51 (3) ◽  
pp. 289-299 ◽  
Author(s):  
G. Robert Lynch ◽  
F. Daniel Vogt ◽  
Harvey R. Smith

2003 ◽  
Vol 117 (2) ◽  
pp. 184 ◽  
Author(s):  
Erin Stewart Lindquist ◽  
Charles F. Aquadro ◽  
Deedra McClearn ◽  
Kevin J. McGowan

Field identification of the White-footed Mouse (Peromyscus leucopus noveboracensis) and Long-tailed Deer Mouse (Peromyscus maniculatus gracilis) is difficult because of their similar external morphology. Peromyscus were sampled by live-trapping during a five-year period (1992-1996) at the Arnot Teaching and Research Forest, Van Etten, New York and identified to species by electrophoresis of their salivary amylase. No electromorphs were shared between P. leucopus and P. maniculatus, thus permitting unambiguous species identification of individuals. Means and ranges of four external measurements (ear, head-body, hind-foot, and tail) and tail to head-body ratio were determined for amylase-genotyped live mice. Although some body measurements did differ on average between the two species (ear, head-body, and tail for adults; hind-foot and tail for juveniles), the ranges of these overlap considerably. When the four external measurements (excluding the tail to head-body ratio) were used to construct two discriminant-function equations, they yielded correct identification of 80% of the adult P. l. noveboracensis and P. m. gracilis assessed excluding juveniles, and 71% of adult and juvenile mice combined. The function reported here allows partial field identification, but genetic analysis remains the only reliable field method for differentiation between live P. l. noveboracensis and P. m. gracilis. Includes erratum for a figure in this article.


Sign in / Sign up

Export Citation Format

Share Document