Spectroscopic properties and structural features of products of physicochemical transformations of dihydroxybenzenes

1993 ◽  
Vol 58 (1-2) ◽  
pp. 108-113
Author(s):  
M. A. Ksenofontov
2017 ◽  
Vol 70 (11) ◽  
pp. 1227 ◽  
Author(s):  
Carol Hua ◽  
Stone Woo ◽  
Aditya Rawal ◽  
Floriana Tuna ◽  
James M. Hook ◽  
...  

A series of electroactive triarylamine porous organic polymers (POPs) with furan, thiophene, and selenophene (POP-O, POP-S, and POP-Se) linkers have been synthesised and their electronic and spectroscopic properties investigated as a function of redox state. Solid state NMR provided insight into the structural features of the POPs, while in situ solid state Vis-NIR and electron paramagnetic resonance spectroelectrochemistry showed that the distinct redox states in POP-S could be reversibly accessed. The development of redox-active porous organic polymers with heterocyclic linkers affords their potential application as stimuli responsive materials in gas storage, catalysis, and as electrochromic materials.


Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 506 ◽  
Author(s):  
Irina Yushina ◽  
Natalya Tarasova ◽  
Dmitry Kim ◽  
Vladimir Sharutin ◽  
Ekaterina Bartashevich

The interrelation between noncovalent bonds and physicochemical properties is in the spotlight due to the practical aspects in the field of crystalline material design. Such study requires a number of similar substances in order to reveal the effect of structural features on observed properties. For this reason, we analyzed a series of three substituted thiazolo[2,3-b][1,3]thiazinium triiodides synthesized by an iodocyclization reaction. They have been characterized with the use of X-ray diffraction, Raman spectroscopy, and thermal analysis. Various types of noncovalent interactions have been considered, and an S…I chalcogen bond type has been confirmed using the electronic criterion based on the calculated electron density and electrostatic potential. The involvement of triiodide anions in the I…I halogen and S…I chalcogen bonding is reflected in the Raman spectroscopic properties of the I–I bonds: identical bond lengths demonstrate different wave numbers of symmetric triiodide vibration and different values of electron density at bond critical points. Chalcogen and halogen bonds formed by the terminal iodine atom of triiodide anion and numerous cation…cation pairwise interactions can serve as one of the reasons for increased thermal stability and retention of iodine in the melt under heating.


2004 ◽  
Vol 69 (16) ◽  
pp. 5419-5427 ◽  
Author(s):  
Bula Dutta ◽  
Pradip Bag ◽  
Bibhutosh Adhikary ◽  
Ulrich Flörke ◽  
Kamalaksha Nag

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5155
Author(s):  
Kamil Kotwica ◽  
Ireneusz Wielgus ◽  
Adam Proń

This short critical review is devoted to the synthesis and functionalization of various types of azaacenes, organic semiconducting compounds which can be considered as promising materials for the fabrication of n-channel or ambipolar field effect transistors (FETs), components of active layers in light emitting diodes (LEDs), components of organic memory devices and others. Emphasis is put on the diversity of azaacenes preparation methods and the possibility of tuning their redox and spectroscopic properties by changing the C/N ratio, modifying the nitrogen atoms distribution mode, functionalization with electroaccepting or electrodonating groups and changing their molecular shape. Processability, structural features and degradation pathways of these compounds are also discussed. A unique feature of this review concerns the listed redox potentials of all discussed compounds which were normalized vs. Fc/Fc+. This required, in frequent cases, recalculation of the originally reported data in which these potentials were determined against different types of reference electrodes. The same applied to all reported electron affinities (EAs). EA values calculated using different methods were recalculated by applying the method of Sworakowski and co-workers (Org. Electron. 2016, 33, 300–310) to yield, for the first time, a set of normalized data, which could be directly compared.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2488
Author(s):  
Barbara Czaplińska ◽  
Katarzyna Malarz ◽  
Anna Mrozek-Wilczkiewicz ◽  
Aneta Slodek ◽  
Mateusz Korzec ◽  
...  

A series of novel styrylquinolines with the benzylidene imine moiety were synthesized and spectroscopically characterized for their applicability in cellular staining. The spectroscopic study revealed absorption in the ultraviolet–visible region (360–380 nm) and emission that covered the blue-green range of the light (above 500 nm). The fluorescence quantum yields were also determined, which amounted to 0.079 in the best-case scenario. The structural features that are behind these values are also discussed. An analysis of the spectroscopic properties and the theoretical calculations indicated the charge-transfer character of an emission, which was additionally evaluated using the Lippert–Mataga equation. Changes in geometry in the ground and excited states, which had a significant influence on the emission process, are also discussed. Additionally, the capability of the newly synthesized compounds for cellular staining was also investigated. These small molecules could effectively penetrate through the cellular membrane. Analyses of the images that were obtained with several of the tested styrylquinolines indicated their accumulation in organelles such as the mitochondria and the endoplasmic reticulum.


2021 ◽  
Vol 23 (1) ◽  
pp. 273
Author(s):  
Marcin Górecki ◽  
Jadwiga Frelek

This paper’s main objective is to show that many different factors must be considered when solving stereochemical problems to avoid misleading conclusions and obtain conclusive results from the analysis of spectroscopic properties. Particularly in determining the absolute configuration, the use of chiroptical methods is crucial, especially when other techniques, including X-ray crystallography, fail, are not applicable, or give inconclusive results. Based on various β-lactam derivatives as models, we show how to reliably determine their absolute configuration (AC) and preferred conformation from circular dichroism (CD) spectra. Comprehensive CD analysis, employing both approaches, i.e., traditional with their sector and helicity rules, and state-of-the-art supported by quantum chemistry (QC) calculations along with solvation models for both electronic (ECD) and vibrational (VCD) circular dichroism ranges, allows confident defining stereochemistry of the b-lactams studied. Based on an in-depth analysis of the results, we have shown that choosing a proper chiroptical method/s strictly depends on the specific case and certain structural features.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicole Balasco ◽  
Luigi Vitagliano ◽  
Antonello Merlino ◽  
Cinzia Verde ◽  
Lelio Mazzarella ◽  
...  

AbstractTetrameric hemoglobins (Hbs) are prototypical systems for the investigations of fundamental properties of proteins. Although the structure of these proteins has been known for nearly sixty years, there are many aspects related to their function/structure that are still obscure. Here, we report the crystal structure of a carbonmonoxy form of the Hb isolated from the sub-Antarctic notothenioid fish Eleginops maclovinus characterised by either rare or unique features. In particular, the distal site of the α chain results to be very unusual since the distal His is displaced from its canonical position. This displacement is coupled with a shortening of the highly conserved E helix and the formation of novel interactions at tertiary structure level. Interestingly, the quaternary structure is closer to the T-deoxy state of Hbs than to the R-state despite the full coordination of all chains. Notably, these peculiar structural features provide a rationale for some spectroscopic properties exhibited by the protein in solution. Finally, this unexpected structural plasticity of the heme distal side has been associated with specific sequence signatures of various Hbs.


2016 ◽  
Vol 16 (11) ◽  
pp. 6390-6404 ◽  
Author(s):  
Elisa Lavigna ◽  
Nertil Xhaferaj ◽  
Aurel Tabacaru ◽  
Marco Lamperti ◽  
Luca Nardo ◽  
...  

2018 ◽  
Vol 156 (7) ◽  
pp. 877-887 ◽  
Author(s):  
V. Enev ◽  
L. Doskočil ◽  
L. Kubíková ◽  
M. Klučáková

AbstractIn the current work, humic acids (HAs) isolated from natural compost and unamended and amended soils in a medium-time field experiment were characterized to evaluate the effects of the amendment at rates of 124, 239 and 478 t/ha on their chemical, compositional and structural features. The impact of the application of compost on their properties was observed over 3 years. Humic acids were characterized using spectral methods and elemental analysis. Humic acid isolated from compost was predominantly aliphatic, with a larger content of nitrogen and low degree of aromaticity and humification. The typical maximum (280/345 nm) of HA obtained from compost lies within the T (tryptophan-like) region, which can be ascribed to proteinaceous organic materials. On the other hand, the HAs obtained from amended soil were mainly aromatic in character, with a larger distribution of oxygen-containing functional groups, molecular weight and greater aromaticity. Fluorophores of HAs obtained from amended soil lie within the C (humic-like) region with typical maxima centred in the range 430–450/500–540 nm, occurring usually in HAs isolated from soil, peat and lignite. According to ultra-violet/visible and Fourier-transform infrared (FTIR) spectroscopy, the larger oxygen contents of these HAs are associated with the substitution of aromatic rings by oxygen-containing functional groups such as carboxylic, hydroxyls and ethers. On the basis of FTIR spectra, it was shown that HAs obtained from amended soil 2 and 3 years after compost application were enriched by peptid, aromatic and polysaccharide compounds absorbing at 1540, 1515 and 1040/cm, respectively.


1985 ◽  
Vol 231 (2) ◽  
pp. 451-457 ◽  
Author(s):  
I Björk

After cleavage of the thioester bonds of human alpha 2-macroglobulin (alpha 2M) by methylamine, the inhibitor undergoes an extensive conformational change and loses its ability to bind proteinases. In contrast, similar cleavage in the presence of dinitrophenyl thiocyanate, a reagent that cyanylates the liberated thiol groups, does not change the mobility of alpha 2M in gel electrophoresis, and the inhibitor also retains activity [Van Leuven, Marynen, Cassiman & Van den Berghe (1982) Biochem. J. 203, 405-411]. Analyses in this work show that also the spectroscopic properties of alpha 2M are essentially unperturbed under these conditions. These observations are consistent with the major change of the conformation of the protein having been arrested by the cyanylation reaction. However, several functional properties of the protein are altered, indicating that a limited conformational change does occur. The apparent stoichiometry of binding of trypsin is thus decreased to about 0.5 mol of enzyme/mol of alpha 2M. Nevertheless trypsin induces a similar conformational change in all molecules of the modified inhibitor as that induced in untreated alpha 2M. This behaviour indicates a similar mode of binding of the enzyme to the modified alpha 2M as to intact alpha 2M, but also a high extent of non-productive activation of binding sites in the modified inhibitor. A further difference to untreated alpha 2M is that most of the bound trypsin molecules react considerably faster with soya-bean trypsin inhibitor. The rate of inhibition of thrombin is also greatly decreased, and the modified inhibitor is more sensitive than untreated alpha 2M to proteolysis at sites outside the ‘bait’ region. The properties of the cyanylated human alpha 2M are thus similar to those of bovine alpha 2M in which the thioester bonds have been cleaved by methylamine in the absence of the cyanylating reagent [Björk, Lindblom & Lindahl (1985) Biochemistry 24, 2653-2660]. These results indicate that the thioester bonds of human and bovine alpha 2M are not required as such for the stability of the gross conformation of the protein or for the binding of proteinases. Nevertheless they participate directly in maintaining certain structural features, similar in the two inhibitors, that are necessary for full proteinase-binding ability. Disruption of these structures leads to a slower and less efficient trapping of the enzymes.


Sign in / Sign up

Export Citation Format

Share Document