fluorescence quantum yields
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 83)

H-INDEX

43
(FIVE YEARS 7)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 522
Author(s):  
Ljiljana Stojanović ◽  
Rachel Crespo-Otero

Due to their substantial fluorescence quantum yields in the crystalline phase, propeller-shaped molecules have recently gained significant attention as potential emissive materials for optoelectronic applications. For the family of cyclopentadiene derivatives, light-emission is highly dependent on the nature of heteroatomic substitutions. In this paper, we investigate excited state relaxation pathways in the tetraphenyl-furan molecule (TPF), which in contrast with other molecules in the family, shows emission quenching in the solid-state. For the singlet manifold, our calculations show nonradiative pathways associated with C-O elongation are blocked in both vacuum and the solid state. A fraction of the population can be transferred to the triplet manifold and, subsequently, to the ground state in both phases. This process is expected to be relatively slow due to the small spin-orbit couplings between the relevant singlet-triplet states. Emission quenching in crystalline TPF seems to be in line with more efficient exciton hopping rates. Our simulations help clarify the role of conical intersections, population of the triplet states and crystalline structure in the emissive response of propeller-shaped molecules.


2021 ◽  
Author(s):  
Zhe Shao ◽  
Wen-Ying Zhang ◽  
Ke Zhao

Abstract To improve two-photon absorption (TPA) response of a newly synthesized probe, a series of ratiometric two-photon fluorescent Zn2+ sensors based on quinoline and DPA moieties have been designed. The one-photon absorption, TPA and emission properties of the experimental and designed probes before and after coordination with Zn2+ are investigated employing the density functional theory in combination with response functions. The design consists of two levels. In the first level of design, five probes are constructed through using several electron acceptors or donors to increase accepting or donating ability of the fluorophores. It shows that all the designed probes have stronger TPA intensities at longer wavelengths with respect to the experimental probe because of the increased intra-molecular charge transfer. Moreover, it is found that the probe 4 built by adding an acyl unit has the largest TPA cross section among the designed strictures due to the form of longer conjugated length and more linear backbone. One dimethylamino terminal attached along the skeleton can improve TPA intensity more efficiently than two side amino groups. Therefore, in the second level of design, a new probe 7 is formed by both an acyl unit and a dimethylamino terminal. It exhibits that the TPA cross sections of probe 7 and its zinc complex increase dramatically. Furthermore, the fluorescence quantum yields of the designed probes 4 and 7 are calculated in a new way, which makes use of the relation between the computed difference of dipole moment and the measured fluorescence quantum yield. The result shows that our design also improves the fluorescence quantum yield considerably. All in all, the designed probes 4 and 7 not only possess enhanced TPA intensities but also have large differences of emission wavelength upon Zn2+ coordination and strong fluorescence intensity, which demonstrates that they are potential ratiometric two-photon fluorescent probes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qiuhua Zhu

Racemic C6-unsubstituted tetrahydropyrimidines (THPs) are the products of an efficient five-component reaction that we developed. THPs show strong AIE characteristics, that is, completely no fluorescence in different solvents but strong emission with fluorescence quantum yields (ΦF) up to 100% upon aggregation. However, the ΦF values of their pure enantiomers are lower than 46%. Unlike common AIE compounds with crowded aryl rotors on a π-bond or on an aryl ring, THPs have three completely non-crowded aryl rotors on a non-aromatic chiral central ring (tetrahydropyrimidine). In this mini review, we first discuss the AIE characteristics of THPs and the influences of molecular structures on their molecular packing modes and optical properties, and then present their applications and forecast the development of other racemic AIE compounds.


2021 ◽  
Vol 9 ◽  
Author(s):  
Akira Shinohara ◽  
Guang Shao ◽  
Takashi Nakanishi ◽  
Hideyuki Shinmori

Here, we report the photophysical structure–property relationship of porphyrins adsorbed on gold nanoparticles. The number of porphyrin–alkanethiolate adsorbates per particle was adjusted by a post-synthetic thiol/thiolate exchange reaction on 1-dodecanethiolate–protected gold nanoparticles. Even with a low loading level of adsorbates (<10% of all thiolate sites on gold nanoparticles), the shoulder absorption at the Soret band was intensified, indicating the formation of aggregates of porphyrin adsorbates on the nanoparticles. Steady-state fluorescence quantum yields could be adjusted by the bulkiness of substituents at the meso-positions of the porphyrin or the methylene linker chain length, regardless of the porphyrin loading level and the nanoparticle diameter.


2021 ◽  
Author(s):  
Chi-Yun Lin ◽  
Matthew Romei ◽  
Irimpan Mathews ◽  
Steven Boxer

The last decades have witnessed an explosion of de novo protein designs with a remarkable range of scaffolds. It remains challenging, however, to design catalytic functions that are competitive with naturally occurring counterparts as well as biomimetic or non-biological catalysts. Although directed evolution often offers efficient solutions, the fitness landscape remains opaque. Green fluorescent protein (GFP), which has revolutionized biological imaging and assays, is one of the most re-designed proteins. While not an enzyme in the conventional sense, GFPs feature competing excited-state decay pathways with the same steric and electrostatic origins as conventional ground-state catalysts, and they exert exquisite control over multiple reaction outcomes through the same principles. Thus, GFP is an “excited-state enzyme”. Herein we show that rationally designed mutants and hybrids that contain environmental mutations and substituted chromophores provide the basis for a quantitative model and prediction that describes the influence of sterics and electrostatics on excited-state catalysis of GFPs. As both perturbations can selectively bias photoisomerization pathways, GFPs with fluorescence quantum yields (FQYs) and photoswitching characteristics tailored for specific applications could be predicted and then demonstrated. The underlying energetic landscape, readily accessible via spectroscopy for GFPs, offers an important missing link in the design of protein function that is generalizable to catalyst design.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hélder Oliveira ◽  
Paula Araújo ◽  
Ana Rita Pereira ◽  
Nuno Mateus ◽  
Victor de Freitas ◽  
...  

AbstractPhotodynamic therapy (PDT) is a well-established therapeutic for the treatment of different diseases. The growing interest of this technique required the development of new photosensitizers with better photo-features. This work reports the study of the potential of five nature-inspired amino-based flavylium compounds with different structural features as photosensitizers towards topical PDT. In terms of dark cytotoxicity the five pigments were tested towards confluent skin cells in both fibroblasts and keratinocytes. In the range of concentrations tested (6.3–100 μM), keratinocytes were more prone to growth inhibition and the IC50 values for 5OH4′NMe2, 7NEt2st4′NMe2 and 7NEt24′NH2 were determined to be 47.3 ± 0.3 μM; 91.0 ± 0.8 μM and 29.8 ± 0.8 μM, respectively. 7NEt24′NMe2, 7NEt2st4′NMe2 and 7NEt24′NH2 showed significant fluorescence quantum yields (from 3.40 to 20.20%) and production of singlet oxygen (1O2). These latter chromophores presented IC50 values of growth inhibition of keratinocytes between 0.9 and 1.5 µM, after 10 min of photoactivation with white light. This cellular damage in keratinocyte cells upon white light activation was accompanied with the production of reactive oxygen species (ROS). It was also found that the compounds can induce damage by either type I (ROS production) or type II (singlet oxygen) PDT mechanism, although a higher cell survival was observed in the presence of 1O2 quenchers. Overall, a structure–activity relationship could be established, ranking the most important functional groups for the photoactivation efficiency as follows: C7-diethylamino > C4′-dimethylamino > C2-styryl.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6047
Author(s):  
Maximilian Paradiz Paradiz Dominguez ◽  
Begüm Demirkurt ◽  
Marion Grzelka ◽  
Daniel Bonn ◽  
Laurent Galmiche ◽  
...  

Tetrazines with branched alkoxy substituents are liquids at ambient temperature that despite the high chromophore density retain the bright orange fluorescence that is characteristic of this exceptional fluorophore. Here, we study the photophysical properties of a series of alkoxy-tetrazines in solution and as neat liquids. We also correlate the size of the alkoxy substituents with the viscosity of the liquids. We show using time-resolved spectroscopy that intersystem crossing is an important decay pathway competing with fluorescence, and that its rate is higher for 3,6-dialkoxy derivatives than for 3-chloro-6-alkoxytetrazines, explaining the higher fluorescence quantum yields for the latter. Quantum chemical calculations suggest that the difference in rate is due to the activation energy required to distort the tetrazine core such that the nπ*S1 and the higher-lying ππ*T2 states cross, at which point the spin-orbit coupling exceeding 10 cm−1 allows for efficient intersystem crossing to occur. Femtosecond time-resolved anisotropy studies in solution allow us to measure a positive relationship between the alkoxy chain lengths and their rotational correlation times, and studies in the neat liquids show a fast decay of the anisotropy consistent with fast exciton migration in the neat liquid films.


2021 ◽  
Author(s):  
Chi-Yun Lin ◽  
Matthew Romei ◽  
Irimpan Mathews ◽  
Steven Boxer

The last decades have witnessed an explosion of de novo protein designs with a remarkable range of scaffolds. It remains challenging, however, to design catalytic functions that are competitive with naturally occurring counterparts as well as biomimetic or non-biological catalysts. Although directed evolution often offers efficient solutions, the fitness landscape remains opaque. Green fluorescent protein (GFP), which has revolutionized biological imaging and assays, is one of the most re-designed proteins. While not an enzyme in the conventional sense, GFPs feature competing excited-state decay pathways with the same steric and electrostatic origins as conventional ground-state catalysts, and they exert exquisite control over multiple reaction outcomes through the same principles. Thus, GFP is an “excited-state enzyme”. Herein we show that rationally designed mutants and hybrids that contain environmental mutations and substituted chromophores provide the basis for a quantitative model and prediction that describes the influence of sterics and electrostatics on excited-state catalysis of GFPs. As both perturbations can selectively bias photoisomerization pathways, GFPs with fluorescence quantum yields (FQYs) and photoswitching characteristics tailored for specific applications could be predicted and then demonstrated. The underlying energetic landscape, readily accessible via spectroscopy for GFPs, offers an important missing link in the design of protein function that is generalizable to catalyst design.


Author(s):  
Tácio T.S. Santos ◽  
Larissa R. Lourenço ◽  
Sthanley R. de Lima ◽  
Luiz R. Goulart ◽  
Djalmir N. Messias ◽  
...  

2021 ◽  
Author(s):  
Shidang Xu ◽  
Pengfei Cai ◽  
Jiali Li ◽  
Xianhe Zhang ◽  
Xianglong Liu ◽  
...  

Organic molecular fluorophores in the second near-infrared window (NIR-II) have attracted much attention in the recent decade due to their great potentials in both fundamental research and practical applications. This is especially true for biomedical research, owing to their deep light penetration depth and low bioluminescence background at the long wavelength. However, the fluorescence quantum yields (QY) of most NIR-II materials are very low, which are not ideal for practical applications. Although there is a growing need to discover new NIR-II fluorophores, most of them were designed based on experience, and the structures were limited to few molecular motifs. Herein, we report the design of high QY NIR-II fluorophores in solutions based on enhancing the rigidity of the conjugated backbones, which could be quantified by the Seminario method. A deep neural network was trained to predict the HOMO-LUMO energy gaps for a chemical library of NIR-II backbone structures. Hundreds of new NIR-II cores with low energy gap were discovered, and eight of them across different acceptor cores are found to have relatively rigid conjugated backbones. With further molecular processing or formulation, the proposed new fluorophores should boost the development of NIR-II materials for applications in a wide range of fields.


Sign in / Sign up

Export Citation Format

Share Document