A model for life prediction in low-cycle fatigue with hold time

1985 ◽  
Vol 20 (10) ◽  
pp. 3763-3770 ◽  
Author(s):  
Jin Wan Hong ◽  
Soo Woo Nam ◽  
Kyong-Tschong Rie
2007 ◽  
Vol 353-358 ◽  
pp. 190-194
Author(s):  
Nian Jin Chen ◽  
Zeng Liang Gao ◽  
Wei Zhang ◽  
Yue Bao Le

The law of low-cycle fatigue with hold time at elevated temperature is investigated in this paper. A new life prediction model for the situation of fatigue and creep interaction is developed, based on the damage due to fatigue and creep. In order to verify the prediction model, strain-controlled low-cycle fatigue tests at temperature 693K, 823K and 873K and fatigue tests with various hold time at temperature 823K and 873K for 316L austenitic stainless steel were carried out. Good agreement is found between the predictions and experimental results.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 183 ◽  
Author(s):  
Xiaowei Wang ◽  
Wei Zhang ◽  
Tianyu Zhang ◽  
Jianming Gong ◽  
Magd Abdel Wahab

Low cycle fatigue (LCF) and creep fatigue interaction (CFI) loadings are the main factors resulting in the failure of many critical components in the infrastructure of power plants and aeronautics. Accurate prediction of life spans under specified loading conditions is significant for the design and maintenance of components. In the present study, various LCF and CFI tests are conducted to investigate the effects of temperature, strain amplitude, hold time and hold direction on the fatigue life of P92 steel. To predict fatigue life under different experimental conditions, various conventional life prediction models are evaluated and discussed. Moreover, a new empirical life prediction model is proposed based on the conventional Manson-Coffin-Basquin (MCB) model. The newly proposed model is able to simultaneously consider the effects of temperature, strain amplitude, hold time and hold direction on predicted life. The main advantage is that only the known input experimental parameters are required to perform the prediction. In addition to the validation made through the experimental data of P92 steel conducted in the present paper, the model is also verified through numerous experimental data reported in the literature for various 9–12% Cr steels.


2018 ◽  
Vol 53 (4) ◽  
pp. 197-209 ◽  
Author(s):  
Xiao-Wei Wang ◽  
De-Guang Shang ◽  
Yu-Juan Sun

A weight function method based on strain parameters is proposed to determine the critical plane in low-cycle fatigue region under both constant and variable amplitude tension–torsion loadings. The critical plane is defined by the weighted mean maximum absolute shear strain plane. Combined with the critical plane determined by the proposed method, strain-based fatigue life prediction models and Wang-Brown’s multiaxial cycle counting method are employed to predict the fatigue life. The experimental critical plane orientation and fatigue life data under constant and variable amplitude tension–torsion loadings are used to verify the proposed method. The results show that the proposed method is appropriate to determine the critical plane under both constant and variable amplitude loadings.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


2014 ◽  
Vol 891-892 ◽  
pp. 1033-1038
Author(s):  
Cheng Li Dong ◽  
Hui Chen Yu ◽  
Ying Li

The material properties of single crystal (SC) superalloys are orientation-dependent. To fully exploit the material capacity, the life modeling needs to consider the anisotropy. In the present study the life modeling of SC nickel-base superalloys is considered by employing the modified Mücker's anisotropic theory in which a Hill type function is utilized for describing the anisotropic failure. Strain-controlled low cycle fatigue (LCF) experiments of SC nickel-base superalloys at different crystallographic orientations (i.e.[00, [01 and [11) under high temperatures (i.e.760°C) are carried out to verify the modeling availability for the modified Mücker's anisotropic theory. Further, based on the stress-strain field obtained by the anisotropic elastoplastic constitutive model coupled with the finite element method (FEM), the modified Mücker's anisotropic theory is employed to predict the fatigue life for SC flat plate with a hole.


Sign in / Sign up

Export Citation Format

Share Document