Induction of a heat shock gene (hsp 70) in rabbit retinal ganglion cells detected by in situ hybridization with plastic-embedded tissue

1990 ◽  
Vol 15 (12) ◽  
pp. 1229-1235
Author(s):  
Tatjana E. Masing ◽  
Sheila J. Rush ◽  
Ian R. Brown
1990 ◽  
Vol 110 (6) ◽  
pp. 2099-2108 ◽  
Author(s):  
P V Sarthy ◽  
M Fu

In the nervous system, neuronal migration and axonal growth are dependent on specific interactions with extracellular matrix proteins. During development of the vertebrate retina, ganglion cell axons extend along the internal limiting (basement) membrane and form the optic nerve. Laminin, a major component of basement membranes, is known to be present in the internal limiting membrane, and might be involved in the growth of ganglion cell axons. The identity of the cells that produce retinal laminin, however, has not been established. In the present study, we have used in situ hybridization to localize the sites of laminin B1 mRNA synthesis in the developing mouse retina. Our results show that there are at least two principal sites of laminin B1 mRNA synthesis: (a) the hyaloid vessels and the lens during the period of major axonal outgrowth, and (b) the retinal ganglion cells at later development stages. Müller (glial) cells, the major class of nonneuronal cells in the retina, do not appear to express laminin B1 mRNA either during development or in the adult retina. In Northern blots, we found a single transcript of approximately 6-kb size that encodes the laminin B1 chain in the retina. Moreover, laminin B1 mRNA level was four- to fivefold higher in the postnatal retina compared to that in the adult. Our results show that in addition to nonneuronal cells, retinal ganglion cells also synthesize laminin. The function of laminin in postnatal retinas, however, remains to be elucidated. Nevertheless, our findings raise the possibility that neurons in other parts of the nervous system might also synthesize extracellular matrix proteins.


2006 ◽  
Vol 405 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Jacky M.K. Kwong ◽  
Maziar Lalezary ◽  
Jessica K. Nguyen ◽  
Christine Yang ◽  
Anuj Khattar ◽  
...  

2004 ◽  
Vol 48 (1) ◽  
pp. 88-88
Author(s):  
Fan Wang ◽  
Nobuyuki Shoji ◽  
Kimiya Shimizu ◽  
Hiromi Kawai ◽  
Yuji Nagayama ◽  
...  

2020 ◽  
Vol 104 ◽  
pp. 101747 ◽  
Author(s):  
Yun Ou-Yang ◽  
Zheng-Li Liu ◽  
Chun-Long Xu ◽  
Jia-Liang Wu ◽  
Jun Peng ◽  
...  

1995 ◽  
Vol 269 (3) ◽  
pp. R608-R613 ◽  
Author(s):  
S. C. Beck ◽  
C. N. Paidas ◽  
H. Tan ◽  
J. Yang ◽  
A. De Maio

The heat shock gene expression plays a role in the protection of cells from injury. In the present study, we have analyzed the expression of heat shock protein (HSP) 72 (the major inducible form of the HSP 70 family) in different rat organs after a total body hyperthermia. The content of HSP 72 was greatest in liver and colon. In contrast, accumulation of HSP 72 was low in heart and brain (3-5% and < 1% of the amount in liver, respectively). This low expression of HSP 72 in heart and brain could not be explained by a difference in the actual temperature within these organs. Analysis of cells in culture that resemble hepatocytes, myoblast, and neurons showed a pattern of HSP 72 expression similar to that observed in liver, heart, and brain in vivo after heat shock. These results suggest that this disparate expression of HSP 72 is due to intrinsic characteristics of the cell types rather than to physiological or environmental conditions. The differential expression of HSP 72 among different cell lines could be correlated with the different levels of protein synthesis protection.


1995 ◽  
Vol 84 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Krystel R. Huxlin ◽  
Robyn Carr ◽  
Mark Schulz ◽  
Ann Jervie Sefton ◽  
Max R. Bennett

Sign in / Sign up

Export Citation Format

Share Document