A note on the mean value of the Dedekind zeta-function of the quadratic field

1970 ◽  
Vol 188 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Yoichi Motohashi
1980 ◽  
Vol 21 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Lenard Weinstein

Let K be a non-abelian cubic field of discriminant D, and ζK(s) its Dedekind zeta-function. Set ψ(s) = ζk(s)/ζ(s). Then it is known that ψ(s) is the Artin L-series associated with the field K. It is also known that ψ(s) is an entire function of order 1.


1989 ◽  
Vol 106 (3) ◽  
pp. 403-417 ◽  
Author(s):  
Wolfgang Müller

Let K be a quadratic number field with discriminant D. The aim of this paper is to study the mean square of the Dedekind zeta function ζK on the critical line, i.e.It was proved by Chandrasekharan and Narasimhan[1] that (1) is at most of order O(T(log T)2). As they noted at the end of their paper, it ‘would seem likely’ that (1) behaves asymptotically like a2T(log T)2, with some constant a2 depending on K. Applying a general mean value theorem for Dirichlet polynomials, one can actually proveThis may be done in just the same way as this general mean value theorem can be used to prove Ingham's classical result on the fourth power moment of the Riemann zeta function (cf. [3], chapter 5). In 1979 Heath-Brown [2] improved substantially on Ingham's result. Adapting his method to the above situation a much better result than (2) can be obtained. The following Theorem deals with a slightly more general situation. Note that ζK(s) = ζ(s)L(s, XD) where XD is a real primitive Dirichlet character modulo |D|. There is no additional difficulty in allowing x to be complex.


2011 ◽  
Vol 26 (2) ◽  
pp. 209-227 ◽  
Author(s):  
Aleksandar Ivić
Keyword(s):  

1953 ◽  
Vol 1 (4) ◽  
pp. 149-158 ◽  
Author(s):  
R. A. Rankin

In some recent work by D. G. Kendall and the author † on the number of points of a lattice which lie in a random circle the mean value of the variance emerged as a constant multiple of the value of the Epstein zeta-function Z(s) associated with the lattice, taken at the point s=. Because of the connexion with the problems of closest packing and covering it seemed likely that the minimum value of Z() would be attained for the hexagonal lattice; it is the purpose of this paper to prove this and to extend the result to other real values of the variable s.


1995 ◽  
Vol Volume 18 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra

International audience In this paper, two conjectures on the mean value of Dirichlet polynomials are given and are shown to imply good lower bound for $\int_H^{T+H}\vert\zeta(\frac{1}{2}+it)^k\vert^2\,dt$, uniform in $k$ and independent of $T$.


1978 ◽  
Vol Volume 1 ◽  
Author(s):  
K Ramachandra

International audience The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results. %It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.


Sign in / Sign up

Export Citation Format

Share Document