The mean square of the Dedekind zeta function in quadratic number fields

1989 ◽  
Vol 106 (3) ◽  
pp. 403-417 ◽  
Author(s):  
Wolfgang Müller

Let K be a quadratic number field with discriminant D. The aim of this paper is to study the mean square of the Dedekind zeta function ζK on the critical line, i.e.It was proved by Chandrasekharan and Narasimhan[1] that (1) is at most of order O(T(log T)2). As they noted at the end of their paper, it ‘would seem likely’ that (1) behaves asymptotically like a2T(log T)2, with some constant a2 depending on K. Applying a general mean value theorem for Dirichlet polynomials, one can actually proveThis may be done in just the same way as this general mean value theorem can be used to prove Ingham's classical result on the fourth power moment of the Riemann zeta function (cf. [3], chapter 5). In 1979 Heath-Brown [2] improved substantially on Ingham's result. Adapting his method to the above situation a much better result than (2) can be obtained. The following Theorem deals with a slightly more general situation. Note that ζK(s) = ζ(s)L(s, XD) where XD is a real primitive Dirichlet character modulo |D|. There is no additional difficulty in allowing x to be complex.

Author(s):  
Zhang Wenpeng

The main purpose of this paper is using the mean value theorem of DirichletL-functions to study the asymptotic property of a sum analogous to Dedekind sum, and give an interesting mean square value formula.


2001 ◽  
Vol 66 (3) ◽  
pp. 1353-1358 ◽  
Author(s):  
Christopher S. Hardin ◽  
Daniel J. Velleman

This paper is a contribution to the project of determining which set existence axioms are needed to prove various theorems of analysis. For more on this project and its history we refer the reader to [1] and [2].We work in a weak subsystem of second order arithmetic. The language of second order arithmetic includes the symbols 0, 1, =, <, +, ·, and ∈, together with number variables x, y, z, … (which are intended to stand for natural numbers), set variables X, Y, Z, … (which are intended to stand for sets of natural numbers), and the usual quantifiers (which can be applied to both kinds of variables) and logical connectives. We write ∀x < t φ and ∃x < t φ as abbreviations for ∀x(x < t → φ) and ∃x{x < t ∧ φ) respectively; these are called bounded quantifiers. A formula is said to be if it has no quantifiers applied to set variables, and all quantifiers applied to number variables are bounded. It is if it has the form ∃xθ and it is if it has the form ∀xθ, where in both cases θ is .The theory RCA0 has as axioms the usual Peano axioms, with the induction scheme restricted to formulas, and in addition the comprehension scheme, which consists of all formulas of the formwhere φ is , ψ is , and X does not occur free in φ(n). (“RCA” stands for “Recursive Comprehension Axiom.” The reason for the name is that the comprehension scheme is only strong enough to prove the existence of recursive sets.) It is known that this theory is strong enough to allow the development of many of the basic properties of the real numbers, but that certain theorems of elementary analysis are not provable in this theory. Most relevant for our purposes is the fact that it is impossible to prove in RCA0 that every continuous function on the closed interval [0, 1] attains maximum and minimum values (see [1]).Since the most common proof of the Mean Value Theorem makes use of this theorem, it might be thought that the Mean Value Theorem would also not be provable in RCA0. However, we show in this paper that the Mean Value Theorem can be proven in RCA0. All theorems stated in this paper are theorems of RCA0, and all of our reasoning will take place in RCA0.


1981 ◽  
Vol 22 (1) ◽  
pp. 19-29 ◽  
Author(s):  
N. J. Kalton

Let X be an F-space (complete metric linear space) and suppose g:[0, 1] → X is a continuous map. Suppose that g has zero derivative on [0, 1], i.e.for 0≤t≤1 (we take the left and right derivatives at the end points). Then, if X is locally convex or even if it merely possesses a separating family of continuous linear functionals, we can conclude that g is constant by using the Mean Value Theorem. If however X* = {0} then it may happen that g is not constant; for example, let X = Lp(0, 1) (0≤p≤1) and g(t) = l[0,t] (0≤t≤1) (the characteristic function of [0, t]). This example is due to Rolewicz [6], [7; p. 116].


2016 ◽  
Vol 100 (548) ◽  
pp. 203-212
Author(s):  
Peter Shiu

The behaviour of the divisor function d (n) is rather tricky. For a prime p, we have d(p) = 2, but if n is the product of the first k primes then, by Chebyshev's estimate for the prime counting function [1, Theorem 414], we have so thatfor such n then, d (n) is ‘unusually large’ — it can exceed any fixed power of log n, for example.In [2] Jameson gives, amongst other things, a derivation of Dirichlet's theorem, which shows that the mean-value of the divisor function in an interval containing n is log n. However, the result is somewhat deceptive because, for most n, the value of d (n) is substantially smaller than log n.


1980 ◽  
Vol 21 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Lenard Weinstein

Let K be a non-abelian cubic field of discriminant D, and ζK(s) its Dedekind zeta-function. Set ψ(s) = ζk(s)/ζ(s). Then it is known that ψ(s) is the Artin L-series associated with the field K. It is also known that ψ(s) is an entire function of order 1.


1985 ◽  
Vol 97 (3) ◽  
pp. 385-395 ◽  
Author(s):  
J. B. Conrey ◽  
A. Ghosh

In this paper we present a proof of the mean-value theorem required by Levinson to show that at least one-third of the zeros of ζ(s) are on the critical line. As in Levinson [3], letwhere Χ(s)=ζ(s)/ζ(1−s) is the usual factor from the functional equation, and letwhereandwhere


Sign in / Sign up

Export Citation Format

Share Document