Refinement monoids, Vaught monoids, and Boolean algebras

1983 ◽  
Vol 265 (4) ◽  
pp. 473-487 ◽  
Author(s):  
Hans Dobbertin
1979 ◽  
Vol 2 (1) ◽  
pp. 17-41
Author(s):  
Michał Jaegermann

In the paper is developed a theory of information storage and retrieval systems which arise in situations when a whole possessed information amounts to a fact that a given document has some feature from properly chosen set. Such systems are described as suitable maps from descriptor algebras into sets of subsets of sets of documents. Since descriptor algebras turn out to be pseudo-Boolean algebras, hence an “inner logic” of our systems is intuitionistic. In the paper is given a construction of systems and are considered theirs properties. We will show also (in Part II) a formalized theory of such systems.


2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


1990 ◽  
Vol 84 (1) ◽  
pp. 136
Author(s):  
Gian-Carlo Rota
Keyword(s):  

Order ◽  
2003 ◽  
Vol 20 (3) ◽  
pp. 265-290 ◽  
Author(s):  
Uri Abraham ◽  
Robert Bonnet ◽  
Wiesław Kubiś ◽  
Matatyahu Rubin
Keyword(s):  

1979 ◽  
Vol 2 (1) ◽  
pp. 63-70
Author(s):  
Tadeusz Traczyk

The notion of numerical characterization of Boolean algebras and coproducts are used to define information systems and to develop the theory of such systems.


1982 ◽  
Vol 47 (4) ◽  
pp. 739-754
Author(s):  
C.P. Farrington

This paper is devoted to the proof of the following theorem.Theorem. Let M be a countable standard transitive model of ZF + V = L, and let ℒ Є M be a wellfounded lattice in M, with top and bottom. Let ∣ℒ∣M = λ, and suppose κ ≥ λ is a regular cardinal in M. Then there is a generic extension N of M such that(i) N and M have the same cardinals, and κN ⊂ M;(ii) the c-degrees of sets of ordinals of N form a pattern isomorphic to ℒ;(iii) if A ⊂ On and A Є N, there is B Є P(κ+)N such that L(A) = L(B).The proof proceeds by forcing with Souslin trees, and relies heavily on techniques developed by Jech. In [5] he uses these techniques to construct simple Boolean algebras in L, and in [6] he uses them to construct a model of set theory whose c-degrees have orderlype 1 + ω*.The proof also draws on ideas of Adamovicz. In [1]–[3] she obtains consistency results concerning the possible patterns of c-degrees of sets of ordinals using perfect set forcing and symmetric models. These methods have the advantage of yielding real degrees, but involve greater combinatorial complexity, in particular the use of ‘sequential representations’ of lattices.The advantage of the approach using Souslin trees is twofold: first, we can make use of ready-made combinatorial principles which hold in L, and secondly, the notion of genericity over a Souslin tree is particularly simple.


1990 ◽  
Vol 41 (2) ◽  
pp. 323-332 ◽  
Author(s):  
M. Mehdi Ebrahimi
Keyword(s):  

In this paper we study internal completeness, injectivity and some related notions in the category MBoo of Boolean algebras in the topos MEns of M-sets, for a monoid M.


Sign in / Sign up

Export Citation Format

Share Document