Selective stimulation of a cellular immune response by methotrexate

1974 ◽  
Vol 4 (2) ◽  
pp. 113-116 ◽  
Author(s):  
L. Levy ◽  
M. W. Whitehouse
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4010-4010 ◽  
Author(s):  
Déborah Revaud ◽  
Ana Bejanariu ◽  
Lamya Loussaief ◽  
Emeline Sarry ◽  
Abdel Zemmar ◽  
...  

Abstract Human T-cell Lymphotrophic Virus 1 (HTLV-1) is the etiologic agent of Adult-T cell Leukemia/Lymphoma (ATL). Therapeutic options for ATL patients are very limited and in aggressive forms of the disease survival rate is only 10% to 30% with conventional chemotherapies and bone marrow transplantation. Although some clinical trials gave encouraging results regarding the efficacy of new treatments, most of them are lifelong, aggressive and failed to achieve a significant impact on long-term survival. Consequently, new treatments for ATL patients are needed to limit relapses and side effects. Specific HTLV-1 cellular immune response is dramatically impaired in ATL patients, which could favor the initiation and the progression of the disease. Hence, stimulating immune responses against HTLV-1 can be an appropriate therapeutic option to treat ATL. THERAVECTYS has developed an anti-HTLV-1 vaccine, based on its lentiviral vector technology inducing a broad, intense and long-lasting cellular immune response after intra-muscular injection. THERAVECTYS was the first company to have launched a clinical trial based on lentiviral vectors technology with the THV01 vaccine for the treatment of HIV (NCT02054286). Results obtained demonstrated both safety and immunogenicity of THV01 in human, with polyfunctional and multi-specific CD4 and CD8 T-cells responses. The anti-HTLV-1 lentiviral vector, THV02 vaccine, encodes for a unique polypeptide derived from Tax, HBZ, p12I and p30II proteins, involved in HTLV-1 pathogenicity and known to be recognized by the immune system of HTLV-1 infected patients. Our preclinical results have demonstrated that THV02 can induce a cellular immune response in C57Bl/6j and BalbC mice and in Sprague Dawley rats, as demonstrated by IFN-γ Elispot. Safety of the THV02 vaccine has been demonstrated during carcinogenicity and regulatory GLP preclinical toxicity studies. Biodistribution and shedding studies demonstrated the very limited diffusion of THV02 after injection, its fast clearance and a non-dissemination in body fluids. As no relevant ATL immunocompetent animal model is available to assess the anti-tumor effect of THV02, THERAVECYTS is developing an ex-vivo efficacy model using blood samples of ATL patients. Briefly, monocyte-derived dendritic cells (MDDC) from blood of ATL patients are purified by isolation of CD14 positive cells from PBMC and differentiation in the presence of IL4 and GM-CSF. MDDC are then transduced with lentiviral vectors encoding for the anti-HTLV-1 antigen and maturation is induced upon TNFa and PGE2 exposure before the co-culture with autologous CD8+ T-cells for stimulation of the cellular immune response. Then, stimulated CD8+ are co-cultured with autologous CD4+ CD25+ ATL cells and the cytotoxic activity is monitored by flow cytometry. Preliminary results demonstrated that MDDC from a chronic ATL patient can be efficiently transduced and matured as attested by the CD40, CD86, HLA-DR, -A, -B and C markers on their surface. In addition, we have observed a specific stimulation of the CD8+, ie an increase of IFNg, TNFa, IL2 and perforin in the media of the co-culture of CD8+ with MDDC expressing anti-HTLV-1 antigen. These data are very encouraging and demonstrate for the first time the feasibility to develop an ex vivo model to assess vaccine efficacy using ATL blood sample. The development of this model is ongoing using several ATL donors representing the different subtypes of the disease and will be presented at the meeting. Regarding the indication and the safety profile of THV02, THERAVECTYS plans to begin a clinical trial in Q4 2015. This assay will be an open-label, dose escalation phase I/II study to assess the safety and the immunogenicity (cellular immune response) of the THV02 vaccination as a treatment of ATL patients. All ATL subtypes will be considered since THV02 vaccine can be combined with conventional ATL treatments. In addition, as the THV02 antigen contains peptides derived from Tax but also HBZ, p12I and p30II viral proteins, all ATL patients can be treated whatever the status of Tax expression. As secondary objectives, both humoral immune response and clinical effect will be assessed. HTLV-1 RNA expression and clonality of HTLV-1 infected cells will be studied as exploratory objectives. Finally, up to 16 patients will be enrolled in France, UK, French Guiana, Martinique and Guadeloupe before doing a phase of extension cohort in US. Disclosures No relevant conflicts of interest to declare.


1999 ◽  
Vol 37 (2) ◽  
pp. 123-129 ◽  
Author(s):  
B. R. Mignon ◽  
T. Leclipteux ◽  
CH. Focant ◽  
A. J. Nikkels ◽  
G. E. PIErard ◽  
...  

2004 ◽  
Vol 146 (4) ◽  
pp. 159-172 ◽  
Author(s):  
D. Müller-Doblies ◽  
S. Baumann ◽  
P. Grob ◽  
A. Hülsmeier ◽  
U. Müller-Doblies ◽  
...  

2005 ◽  
Vol 102 (Special_Supplement) ◽  
pp. 180-184 ◽  
Author(s):  
György T. Szeifert ◽  
Isabelle Salmon ◽  
Sandrine Rorive ◽  
Nicolas Massager ◽  
Daniel Devriendt ◽  
...  

Object. The aim of this study was to analyze the cellular immune response and histopathological changes in secondary brain tumors after gamma knife surgery (GKS). Methods. Two hundred ten patients with cerebral metastases underwent GKS. Seven patients underwent subsequent craniotomy for tumor removal between 1 and 33 months after GKS. Four of these patients had one tumor, two patients had two tumors, and one patient had three. Histological and immunohistochemical investigations were performed. In addition to routine H & E and Mallory trichrome staining, immunohistochemical reactions were conducted to characterize the phenotypic nature of the cell population contributing to the tissue immune response to neoplastic deposits after radiosurgery. Light microscopy revealed an intensive lymphocytic infiltration in the parenchyma and stroma of tumor samples obtained in patients in whom surgery was performed over 6 months after GKS. Contrary to this, extensive areas of tissue necrosis with either an absent or scanty lymphoid population were observed in the poorly controlled neoplastic specimens obtained in cases in which surgery was undertaken in patients less than 6 months after GKS. Immunohistochemical characterization demonstrated the predominance of CD3-positive T cells in the lymphoid infiltration. Conclusions. Histopathological findings of the present study are consistent with a cellular immune response of natural killer cells against metastatic brain tumors, presumably stimulated by the ionizing energy of focused radiation.


Sign in / Sign up

Export Citation Format

Share Document