borna disease
Recently Published Documents


TOTAL DOCUMENTS

785
(FIVE YEARS 39)

H-INDEX

56
(FIVE YEARS 4)

iScience ◽  
2021 ◽  
pp. 103621
Author(s):  
Florent Henri Marty ◽  
Luca Bettamin ◽  
Anne Thouard ◽  
Karine Bourgade ◽  
Sophie Allart ◽  
...  

Author(s):  
Christina Frank ◽  
Jonathan Wickel ◽  
Dirk Brämer ◽  
Jakob Matschke ◽  
Richard Ibe ◽  
...  

Author(s):  
Mako Yanai ◽  
Madoka Sakai ◽  
Ryo Komorizono ◽  
Akiko Makino ◽  
Keizo Tomonaga

Author(s):  
Karine Bourgade ◽  
Anne Thouard ◽  
Florence Abravanel ◽  
Anne‐Laure Hebral ◽  
Arnaud Del Bello ◽  
...  

2021 ◽  
Author(s):  
Takehiro Kanda ◽  
Masayuki Horie ◽  
Yumiko Komatsu ◽  
Keizo Tomonaga

An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate a REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus . We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, on the other hand, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also understanding of the molecular regulation of orthobornavirus polymerase activity. Importance Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus , is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus , can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dennis Tappe ◽  
Kirsten Pörtner ◽  
Christina Frank ◽  
Hendrik Wilking ◽  
Arnt Ebinger ◽  
...  

Abstract Background The true burden and geographical distribution of human Borna disease virus 1 (BoDV-1) encephalitis is unknown. All detected cases so far have been recorded in Bavaria, southern Germany. Case presentation A retrospective laboratory and epidemiological investigation of a 2017 case of fatal encephalitis in a farmer in Brandenburg, northeast Germany, demonstrated BoDV-1 as causative agent by polymerase chain reaction, immunohistochemistry and in situ hybridization. Next-generation sequencing showed that the virus belonged to a cluster not known to be endemic in Brandenburg. The investigation was triggered by a recent outbreak of animal Borna disease in the region. Multiple possible exposures were identified. The next-of-kin were seronegative. Conclusions The investigation highlights clinical awareness for human BoDV-1 encephalitis which should be extended to all areas endemic for animal Borna disease. All previously diagnosed human cases had occurred > 350 km further south. Further testing of shrews and livestock with Borna disease may show whether this BoDV-1 cluster is additionally endemic in the northwest of Brandenburg.


Author(s):  
Bea Clarise B. Garcia ◽  
Masayuki Horie ◽  
Shohei Kojima ◽  
Akiko Makino ◽  
Keizo Tomonaga

2021 ◽  
Vol 102 (7) ◽  
Author(s):  
Dennis Rubbenstroth ◽  
Thomas Briese ◽  
Ralf Dürrwald ◽  
Masayuki Horie (堀江真行) ◽  
Timothy H. Hyndman ◽  
...  

Members of the family Bornaviridae produce enveloped virions containing a linear negative-sense non-segmented RNA genome of about 9 kb. Bornaviruses are found in mammals, birds, reptiles and fish. The most-studied viruses with public health and veterinary impact are Borna disease virus 1 and variegated squirrel bornavirus 1, both of which cause fatal encephalitis in humans. Several orthobornaviruses cause neurological and intestinal disorders in birds, mostly parrots. Endogenous bornavirus-like sequences occur in the genomes of various animals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bornaviridae, which is available at ictv.global/report/bornaviridae.


2021 ◽  
Author(s):  
Yuya Hirai ◽  
Keizo Tomonaga ◽  
Masayuki Horie

Inclusion bodies (IBs) are characteristic biomolecular condensates organized by mononegaviruses. Here, we characterize the IBs of Borna disease virus 1 (BoDV-1), a unique mononegavirus that forms IBs in the nucleus, in terms of liquid-liquid phase separation (LLPS). The BoDV-1 phosphoprotein (P) alone induces LLPS and the nucleoprotein (N) is incorporated into the P droplet in vitro. In contrast, co-expression of N and P is required for the formation of IB-like structure in cells. Furthermore, while BoDV-1 P binds to RNA, an excess amount of RNA dissolves the liquid droplets formed by N and P. Notably, the N-terminal intrinsically disordered region of BoDV-1 P is essential to drive LLPS and bind to RNA, suggesting that both abilities could compete with one another. These features are unique among mononegaviruses, and thus this study will contribute to a deeper understanding of LLPS-driven organization and RNA-mediated regulation of biomolecular condensates.


Sign in / Sign up

Export Citation Format

Share Document