Permeability and pore structure evolution of silicocalcareous and hematite high-strength concretes submitted to high temperatures

2001 ◽  
Vol 34 (10) ◽  
pp. 619-628 ◽  
Author(s):  
C. Gallé ◽  
J. Sercombe
Alloy Digest ◽  
1984 ◽  
Vol 33 (8) ◽  

Abstract EASTERN STAINLESS TYPE 310S has high resistance to corrosion and oxidation at high temperatures. It also has high strength at elevated temperatures. Thus it is especially suitable for service at high temperatures. It is very ductile and can be welded readily. Among the many applications for Type 310S, a few typical uses include annealing boxes, chemical plant equipment, fire box sheets, furnace linings, heat exchangers, oil-refining equipment, kiln linings and tube hangers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-450. Producer or source: Eastern Stainless Steel Company.


2008 ◽  
Vol 73 (624) ◽  
pp. 341-347 ◽  
Author(s):  
Masashi MATSUDO ◽  
Hirokazu NISHIDA ◽  
Takahiro OHTSUKA ◽  
Takeo HIRASHIMA ◽  
Takeo ABE

2014 ◽  
Vol 1014 ◽  
pp. 49-52
Author(s):  
Xiao Ping Su

With the wide application of high strength concrete in the building construction,the risk making concrete subject to high temperatures during a fire is increasing. Comparison tests on the mechanical properties of high strength concrete (HSC) and normal strength concrete (NSC) after the action of high temperature were made in this article, which were compared from the following aspects: the peak stress, the peak strain, elasticity modulus, and stress-strain curve after high temperature. Results show that the laws of the mechanical properties of HSC and NSC changing with the temperature are the same. With the increase of heating temperature, the peak stress and elasticity modulus decreases, while the peak strain grows rapidly. HSC shows greater brittleness and worse fire-resistant performance than NSC, and destroys suddenly. The research and evaluation on the fire-resistant performance of HSC should be strengthened during the structural design and construction on the HSC buildings.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
John B. Lowe ◽  
Richard T. Baker

Ordered mesoporous silica materials are of interest for a wide range of applications. In many of these, elevated temperatures are used either in the preparation of the material or during its use. Therefore, an understanding of the effect of high temperature treatments on these materials is desirable. In this work, a detailed structural study is performed on silicas with three representative pore structures: a 2-D hexagonal pore arrangement (SBA-15), a continuous 3D cubic bimodal pore structure (KIT-6), and a 3D large cage pore structure (FDU-12). Each silica is studied as prepared and after treatment at a series of temperatures between 300 and 900°C. Pore structures are imaged using Transmission Electron Microscopy. This technique is used in conjunction with Small-Angle X-ray Diffraction, gas physisorption, and29Si solid state Nuclear Magnetic Resonance. Using these techniques, the pore size distributions, the unit cell dimensions of the mesoporous structures, and the relative occupancy of the distinct chemical environments of Si within them are cross correlated for the three silicas and their evolution with treatment temperature is elucidated. The physical and chemical properties before, during, and after collapse of these structures at high temperatures are described as are the differences in behavior between the three silica structures.


Sign in / Sign up

Export Citation Format

Share Document