pore size distributions
Recently Published Documents


TOTAL DOCUMENTS

587
(FIVE YEARS 133)

H-INDEX

55
(FIVE YEARS 6)

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 127-165
Author(s):  
V. M. Gun'ko ◽  

The morphological and textural characteristics of various silicas (93 fumed silicas and 56 porous silicas), different carbons (230), and porous polymers (53) are analyzed using probe (nitrogen, argon, benzene, n-decane, water) adsorption, small angle X-ray scattering (SAXS), and transition (TEM), scanning (SEM) electron and atom force (AFM) microscopies. There are certain correlations between pore volume (Vp) and specific surface area (SSA, SBET) for these materials. Synthesis and treatment temperatures affect this relationship since a linear Vp - SBET approximation scatter decreases with decreasing these temperatures. Silicas are composed of nonporous nanoparticles (NPNP), but activated carbons (AC) are composed of porous nanoparticles (PNP). For different materials, NP are weakly or strongly packed in secondary structures. However, there are general features of pore size distributions (PSD) for NP-based materials, e.g., minimal contribution of narrow mesopores of 3-5 nm in radius due NP-packing effects. For AC produced using the same chars and activation agents but with varied activation time, the textural characteristics demonstrate smooth changes with increasing burn-off degree: nanopores partially transform into narrow mesopores with opposite PSD shifts of broad mesopores and macropores. Comparison of adsorption (open pores accessible for probes) and SAXS (both open and closed pores) data for carbons shows that the difference decreases with increasing burn-off degree due to decreasing contribution of closed pores. Most clear pictures on the particulate morphology and texture could be obtained in parallel analysis using adsorption, SAXS, and microscopic methods with appropriate data treatments.


2021 ◽  
Author(s):  
Ming-yi Chen ◽  
Ya-pu Yang ◽  
Xiao-yun Chen ◽  
Fu-chao Tian ◽  
Wei-li Sun ◽  
...  

Abstract Coal and gas outburst is one of the most serious disasters for underground coal mining. The water adsorbed on coal can leads to that the pore structure of moist coal is different from that of dry coal, thereby affecting methane desorption characteristics of coal for the outburst risk prediction. In this paper, the impact of moisture on pore structure and methane desorption performance were investigated. The analysis on low-temperature nitrogen gas adsorption tests show that the micropores (pore diameter < 10 nm) are most affected by the adsorbed water. In particular, for water-equilibrated coal sample at 98% relatively humidity, the micropores less than 4 nm analyzed by DFT pore size distributions almost disappear probably due to the blocking effect of the formed water clusters and capillary water. In this case, the micropores can still contributes most sites for gas adsorption. Furthermore, the fractal dimension at relative pressure of 0–0.5 (D1) and 0.5–1 (D2) calculated by the Frenkel-Halsey-Hill model indicates that, when moisture content is less than 4.74%, D1 decreases rapidly while D2 shows a slight change; whereas, further increases in moisture content results in that D2 decreases significantly and D1 remains at about 2.32. Further investigation shows that, below the equilibrium moisture content, the ultimate desorption volume (A) and initial desorption rate (V0) are closely related to D1, while the desorption constant (Kt) mainly depends on D2. Therefore, the adsorbed moisture has significant negative impact on methane desorption performances by affecting characteristics of coal’s pores.


Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Santiago G Solazzi ◽  
Nguyen Van Nghia ◽  
Phan Van Do

Summary Seismoelectric signals are generated by electrokinetic coupling from seismic wave propagation in fluid-filled porous media. This process is directly related to the existence of an electrical double layer at the interface between the pore fluid and minerals composing the pore walls. The seismoelectric method attracts the interest of researchers in different areas, from oil and gas reservoir characterization to hydrogeophysics, due to the sensitivity of the seismoelectric signals to medium and fluid properties. In this work, we propose a physically-based model for the dynamic streaming potential coupling coefficient (SPCC) by conceptualizing a porous medium as a bundle of tortuous capillaries characterized by presenting different pore size distributions (PSD). The results show that the dynamic streaming potential coupling coefficient is a complex function depending on the properties of pore fluid, mineral-pore fluid interfaces, microstructural parameters of porous media and frequency. Parameters influencing the dynamic SPCC are investigated and explained. In particular, we show that the PSD affects the transition frequency as well as the shape of the SPCC response as a function of frequency. The proposed model is then compared with published data and previous models. It is found that the approach using the lognormal distribution is in very good agreement with experimental data as well as with previous models. Conversely, the approach that uses the fractal distribution provides a good match with published data for sandstone samples but not for sand samples. This result implies that the fractal PSD may not be pertinent for the considered sand samples, which exhibit a relatively narrow distribution of pore sizes. Our proposed approach can work for any PSD, for example, including complex ones such as double porosity or inferred from direct measurements. This makes the proposed models more versatile than models available in literature.


Author(s):  
Morgan Stefik

AbstractBlock polymer structure-directing agents (SDA) enable the production of porous nanoscale materials. Most strategies rely upon polymer equilibration where diverse morphologies are realized in porous functional materials. This review details how solvent selectivity determines the polymer SDA behaviors, spanning from bulk-type to solution-type. Equilibrating behavior of either type, however, obscures nanostructure cause-and-effect since the resulting sample series convolve multiple spatial variations. Solution-type SDA behaviors include both dynamic and persistent micelles. Persistent micelle templates (PMT) use high solvent selectivity for kinetic entrapment. PMTs enable independent wall thickness control with demonstrated 2 Å precision alterations. Unimodal PMT pore size distributions have spanned from 11.8 to 109 nm and multimodal pore sizes up to 290 nm. The PMT method is simple to validate with diffraction models and is feasible in any laboratory. Finally, recent energy device publications enabled by PMT are reviewed where tailored nanomaterials provide a unique perspective to unambiguously identify nanostructure–property–performance relationships. Graphical abstract


2021 ◽  
Vol 72 (05) ◽  
pp. 552-560
Author(s):  
SEZEN DÖNMEZ DİNÇ ◽  
FATMA GÖKTEPE

Electrospun nanofibrous surfaces were produced by using two different polymers (PA 6,6 and PVA) at three different levels of polymer feeding rate (0.2, 0.6 and 1.0 ml/h, respectively) and three different levels of production time in electrospinning (5, 10 and 15 minutes, respectively) and the effect of polymer type, polymer feeding rate and production time was determined by analyzing unit weight and thickness of the nanofibrous membranes as well as fibre fineness and pore size distributions. The results showed that much finer fibres were produced by PA 6,6 polymer compare to PVA. The minimum average fibre fineness was 150.96 nm (by PA 6,6 polymer; 0.2 ml/h; 5 min.) while maximum fibre fineness was 243.43 nm (by PVA polymer; 0.6 ml/h; 15 min.). Similarly, the pore sizes of nanofibrous surfaces produced by PA 6,6 were smaller compare to the ones produced by PVA polymer. The results also indicated that coarser fibres were produced as the polymer feed rate and electrospinning time increased. In the second part of the work, composite structures were obtained by combining nanofibrous surfaces with PP non-woven material and their air permeability and filtration efficiency by using an aerosol having 0.2–0.33 mm diameter range were analyzed. The air permeability of PA 6,6 nanofibrous surfaces were much higher compare to the ones produced by PVA and quite high filtration efficiency (99.901 %) was obtained with PA 6,6 nanofibrous surfaces. Also, potential of these nanofibrous surfaces was evaluated by analysing chemical groups eliminated following their exposure to cigarette smoke which was chosen as a specific case study.


2021 ◽  
Vol 90 (10) ◽  
pp. 103801
Author(s):  
Morise Karasawa ◽  
Yasunori Yokoyama ◽  
Kingo Takiguchi ◽  
Hiroshi Takahashi ◽  
Takashi Kikukawa ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1664
Author(s):  
Maitê Harguindeguy ◽  
Lorenzo Stratta ◽  
Davide Fissore ◽  
Roberto Pisano

The freezing phenomenon has a dramatic impact on the quality of freeze-dried products. Several freezing models applied to solutions in vials have been proposed to predict the resulting product morphology and describe heat transfer mechanisms. However, there is a lack of detailed experimental observations of the freezing phenomenon in vials in the literature. Thus, the present work offers new experimental observations of the freezing phenomenon in vials by infrared (IR) thermography. IR imaging allowed each vial’s whole axial temperature profile to be collected during freezing, providing significant insights into the process. Spontaneous nucleation and vacuum-induced surface freezing (VISF), as a controlled nucleation technique, are investigated. Batches having vials in direct contact with the shelf (exchanging heat mainly through conduction) as well as suspended (exchanging heat mainly through natural convection and radiation) were tested. The study used three solutions: sucrose 5%, mannitol 5%, and dextran 10%. SEM images coupled with an automated image segmentation technique were also performed to examine possible correlations between the freezing observations and the resulting pore size distributions. IR thermography was found to be a promising tool for experimentally predicting the resulting product morphology in-line.


2021 ◽  
Vol 25 (10) ◽  
pp. 5399-5413
Author(s):  
Hongxiu Wang ◽  
Jingjing Jin ◽  
Buli Cui ◽  
Bingcheng Si ◽  
Xiaojun Ma ◽  
...  

Abstract. Soil evaporation is a key process in the water cycle and can be conveniently quantified using δ2H and δ18O in bulk surface soil water (BW). However, recent research shows that soil water in larger pores evaporates first and differs from water in smaller pores in δ2H and δ18O, which disqualifies the quantification of evaporation from BW δ2H and δ18O. We hypothesized that BW had different isotopic compositions from evaporating water (EW). Therefore, our objectives were to test this hypothesis first and then evaluate whether the isotopic difference alters the calculated evaporative water loss. We measured the isotopic composition of soil water during two continuous evaporation periods in a summer maize field. Period I had a duration of 32 d, following a natural precipitation event, and period II lasted 24 d, following an irrigation event with a 2H-enriched water. BW was obtained by cryogenically extracting water from samples of 0–5 cm soil taken every 3 d; EW was derived from condensation water collected every 2 d on a plastic film placed on the soil surface. The results showed that when event water was heavier than pre-event BW, δ2H of BW in period II decreased, with an increase in evaporation time, indicating heavy water evaporation. When event water was lighter than the pre-event BW, δ2H and δ18O of BW in period I and δ18O of BW in period II increased with increasing evaporation time, suggesting light water evaporation. Moreover, relative to BW, EW had significantly smaller δ2H and δ18O in period I and significantly smaller δ18O in period II (p<0.05). These observations suggest that the evaporating water was close to the event water, both of which differed from the bulk soil water. Furthermore, the event water might be in larger pores from which evaporation takes precedence. The soil evaporative water losses derived from EW isotopes were compared with those from BW. With a small isotopic difference between EW and BW, the evaporative water losses in the soil did not differ significantly (p>0.05). Our results have important implications for quantifying evaporation processes using water stable isotopes. Future studies are needed to investigate how soil water isotopes partition differently between pores in soils with different pore size distributions and how this might affect soil evaporation estimation.


Sign in / Sign up

Export Citation Format

Share Document