Ideal weights: Asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation

1998 ◽  
Vol 4 (4-5) ◽  
pp. 491-519 ◽  
Author(s):  
Michael Brian Korey
2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


2013 ◽  
Vol 95 (2) ◽  
pp. 158-168
Author(s):  
H.-Q. BUI ◽  
R. S. LAUGESEN

AbstractEvery bounded linear operator that maps ${H}^{1} $ to ${L}^{1} $ and ${L}^{2} $ to ${L}^{2} $ is bounded from ${L}^{p} $ to ${L}^{p} $ for each $p\in (1, 2)$, by a famous interpolation result of Fefferman and Stein. We prove ${L}^{p} $-norm bounds that grow like $O(1/ (p- 1))$ as $p\downarrow 1$. This growth rate is optimal, and improves significantly on the previously known exponential bound $O({2}^{1/ (p- 1)} )$. For $p\in (2, \infty )$, we prove explicit ${L}^{p} $ estimates on each bounded linear operator mapping ${L}^{\infty } $ to bounded mean oscillation ($\mathit{BMO}$) and ${L}^{2} $ to ${L}^{2} $. This $\mathit{BMO}$ interpolation result implies the ${H}^{1} $ result above, by duality. In addition, we obtain stronger results by working with dyadic ${H}^{1} $ and dyadic $\mathit{BMO}$. The proofs proceed by complex interpolation, after we develop an optimal dyadic ‘good lambda’ inequality for the dyadic $\sharp $-maximal operator.


1999 ◽  
Vol 42 (1) ◽  
pp. 97-103 ◽  
Author(s):  
E. G. Kwon

AbstractLet B = Bn be the open unit ball of Cn with volume measure v, U = B1 and B be the Bloch space on , 1 ≤ α < 1, is defined as the set of holomorphic f : B → C for whichif 0 < α < 1 and , the Hardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic f : B → U for which the composition operator defined by , is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.


1985 ◽  
pp. 666-677
Author(s):  
F. John ◽  
L. Nirenberg

Sign in / Sign up

Export Citation Format

Share Document