composition operator
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Anuradha Gupta ◽  
Geeta Yadav

In this paper, the necessary and sufficient conditions for the product of composition operators to be isometry are obtained on weighted Bergman space. With the help of a counter example we also proved that unlike on [Formula: see text] and [Formula: see text] the composition operator on [Formula: see text] induced by an analytic self-map on [Formula: see text] with fixed origin need not be of norm one. We have generalized the Schwartz’s [Composition operators on [Formula: see text], thesis, University of Toledo (1969)] well-known result on [Formula: see text] which characterizes the almost multiplicative operator on [Formula: see text]


Author(s):  
Werkaferahu Seyoum ◽  
Tesfa Mengestie

AbstractFor holomorphic pairs of symbols $$(u, \psi )$$ ( u , ψ ) , we study various structures of the weighted composition operator $$ W_{(u,\psi )} f= u \cdot f(\psi )$$ W ( u , ψ ) f = u · f ( ψ ) defined on the Fock spaces $$\mathcal {F}_p$$ F p . We have identified operators $$W_{(u,\psi )}$$ W ( u , ψ ) that have power-bounded and uniformly mean ergodic properties on the spaces. These properties are described in terms of easy to apply conditions relying on the values |u(0)| and $$|u(\frac{b}{1-a})|$$ | u ( b 1 - a ) | , where a and b are coefficients from linear expansion of the symbol $$\psi $$ ψ . The spectrum of the operators is also determined and applied further to prove results about uniform mean ergodicity.


Author(s):  
Abraham Rueda Zoca

AbstractGiven two metric spaces M and N we study, motivated by a question of N. Weaver, conditions under which a composition operator $$C_\phi :{\mathrm {Lip}}_0(M)\longrightarrow {\mathrm {Lip}}_0(N)$$ C ϕ : Lip 0 ( M ) ⟶ Lip 0 ( N ) is an isometry depending on the properties of $$\phi $$ ϕ . We obtain a complete characterisation of those operators $$C_\phi $$ C ϕ in terms of a property of the function $$\phi $$ ϕ in the case that $$B_{{\mathcal {F}}(M)}$$ B F ( M ) is the closed convex hull of its preserved extreme points. Also, we obtain necessary condition for $$C_\phi $$ C ϕ being an isometry in the case that M is geodesic.


2021 ◽  
Vol 29 (2) ◽  
pp. 243-250
Author(s):  
HAMID VAEZI ◽  
MOHAMAD NAGHLISAR

In this paper we consider the weighted composition operator uC_{\varphi} from Bloch-type space B^{\alpha} into Bers-type space H_{\beta}^{\infty}, in three cases, \alpha>1, \alpha=1 and \alpha<1. We give the necessary and sufficient conditions for boundedness and compactness of the above operator.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ligang Geng

AbstractLet u be an analytic function in the unit disk $\mathbb{D}$ D and φ be an analytic self-map of $\mathbb{D}$ D . We give characterizations of the symbols u and φ for which the multiplication operator $M_{u}$ M u and the weighted composition operator $M_{u,\varphi }$ M u , φ are isometries of BMOA.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
René Erlin Castillo ◽  
Rainier Sánchez ◽  
Eduard Trousselot

2021 ◽  
Vol 18 (5) ◽  
Author(s):  
María J. Beltrán-Meneu ◽  
Enrique Jordá

AbstractGiven an affine symbol $$\varphi $$ φ and a multiplier w,  we focus on the weighted composition operator $$C_{w, \varphi }$$ C w , φ acting on the spaces Exp and $$Exp^0$$ E x p 0 of entire functions of exponential and of infraexponential type, respectively. We characterize the continuity of the operator and, for w the product of a polynomial by an exponential function, we completely characterize power boundedness and (uniform) mean ergodicity. In the case of multiples of composition operators, we also obtain the spectrum and characterize hypercyclicity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vijay K. Srivastava ◽  
Harish Chandra

Abstract In this paper, we give a characterization of a hypercyclic weighted composition operator on ℓ p {\ell^{p}} ( 1 ≤ p < ∞ {1\leq p<\infty} ). We also obtain some necessary conditions and sufficient conditions for the supercyclicity and cyclicity of a weighted composition operator on ℓ p {{\ell}^{p}} ( 1 ≤ p < ∞ {1\leq p<\infty} ).


Sign in / Sign up

Export Citation Format

Share Document