A finite-dimensional normed space with two non-equivalent symmetric bases

1994 ◽  
Vol 87 (1-3) ◽  
pp. 143-151 ◽  
Author(s):  
W. T. Gowers
2019 ◽  
Vol 62 (1) ◽  
pp. 71-74
Author(s):  
Tadeusz Figiel ◽  
William Johnson

AbstractA precise quantitative version of the following qualitative statement is proved: If a finite-dimensional normed space contains approximately Euclidean subspaces of all proportional dimensions, then every proportional dimensional quotient space has the same property.


2007 ◽  
Vol 142 (3) ◽  
pp. 497-507 ◽  
Author(s):  
CORMAC WALSH

AbstractWe determine the set of Busemann points of an arbitrary finite-dimensional normed space. These are the points of the horofunction boundary that are the limits of “almost-geodesics”. We prove that all points in the horofunction boundary are Busemann points if and only if the set of extreme sets of the dual unit ball is closed in the Painlevé–Kuratowski topology.


2002 ◽  
Vol 66 (1) ◽  
pp. 125-134
Author(s):  
Juan C. García-Vázquez ◽  
Rafael Villa

A number r > 0 is called a rendezvous number for a metric space (M, d) if for any n ∈ ℕ and any x1,…xn ∈ M, there exists x ∈ M such that . A rendezvous number for a normed space X is a rendezvous number for its unit sphere. A surprising theorem due to O. Gross states that every finite dimensional normed space has one and only one average number, denoted by r (X). In a recent paper, A. Hinrichs solves a conjecture raised by R. Wolf. He proves that for any n-dimensional real normed space. In this paper, we prove the analogous inequality in the complex case for n ≥ 3.


2011 ◽  
Vol 48 (2) ◽  
pp. 180-192
Author(s):  
Konrad Swanepoel

The midpoint set M(S) of a set S of points is the set of all midpoints of pairs of points in S. We study the largest cardinality of a midpoint set M(S) in a finite-dimensional normed space, such that M(S) is contained in the unit sphere, and S is outside the closed unit ball. We show in three dimensions that this maximum (if it exists) is determined by the facial structure of the unit ball. In higher dimensions no such relationship exists. We also determine the maximum for euclidean and sup norm spaces.


2016 ◽  
Vol 16 (4) ◽  
Author(s):  
Francisco Javier García-Pacheco ◽  
Enrique Naranjo-Guerra

AbstractOur first result says that every real or complex infinite-dimensional normed space has an unbounded absolutely convex and absorbing subset with empty interior. As a consequence, a real normed space is finite-dimensional if and only if every convex subset containing 0 whose linear span is the whole space has non-empty interior. In our second result we prove that every real or complex separable normed space with dimension greater than 1 contains a balanced and absorbing subset with empty interior which is dense in the unit ball. Explicit constructions of these subsets are given.


2011 ◽  
Vol 54 (4) ◽  
pp. 726-738
Author(s):  
M. I. Ostrovskii

AbstractLet BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection P: Y → X such that P(BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have “exotic” minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having “exotic” minimal-volume sufficient enlargements in terms of Auerbach bases.


1984 ◽  
Vol 27 (2) ◽  
pp. 105-113
Author(s):  
Fuensanta Andreu

The classical Dvoretzky-Rogers theorem states that if E is a normed space for which l1(E)=l1{E} (or equivalently , then E is finite dimensional (see [12] p. 67). This property still holds for any lp (l<p<∞) in place of l1 (see [7]p. 104 and [2] Corollary 5.5). Recently it has been shown that this result remains true when one replaces l1 by any non nuclear perfect sequence space having the normal topology (see [14]). In this context, De Grande-De Kimpe [4] gives an extension of the Devoretzky-Rogers theorem for perfect Banach sequence spaces.


Sign in / Sign up

Export Citation Format

Share Document