Low temperature plasma surface alloying of medical grade austenitic stainless steel with carbon and nitrogen

2006 ◽  
Vol 151 (11) ◽  
pp. 446-450 ◽  
Author(s):  
J. Buhagiar ◽  
H. Dong ◽  
T. Bell
2008 ◽  
Vol 373-374 ◽  
pp. 296-299 ◽  
Author(s):  
Joseph P. Buhagiar ◽  
Han Shan Dong

The novel low temperature plasma alloying technique that simultaneously introduces both nitrogen and carbon into the surface of austenitic stainless steel has been used in the past to create a hybrid N-C S-Phase. This S-Phase layer boasts of high hardness and wear resistance without any detriment to corrosion resistance. In this study, the afore mentioned hybrid N-C S-Phase was successfully implemented in the surface of two medical grade austenitic stainless steels: ASTM F138 and F1586. At an optimum process temperature of 430°C a very hard, 20μm precipitate-free S-Phase layer was created. Anodic Polarization tests in Ringer’s solution showed that the corrosion resistance of this layer was similar to that of the untreated alloys. Both dry-wear and corrosion-wear (Ringer’s) behaviour of the surface treated alloys showed an improvement of more than 350% and 40% respectively when compared to the untreated material.


2006 ◽  
Vol 118 ◽  
pp. 85-90 ◽  
Author(s):  
Y. Sun ◽  
E. Haruman

This paper gives a brief review on the three low temperature plasma surface alloying processes that have been developed in recent years to engineer the surfaces of austenitic stainless steels to achieve much enhanced surface hardness and wear resistance, without compromising their corrosion resistance. These include low temperature plasma nitriding, low temperature plasma carburizing and the newly developed hybrid process involving the simultaneous incorporation of nitrogen and carbon to form a dual layer structure. The processing, structural and property characteristics of each process are discussed briefly in this paper.


Sign in / Sign up

Export Citation Format

Share Document