On expectations associated with maximum likelihood estimation in the Weibull distribution

1998 ◽  
Vol 7 (1) ◽  
pp. 15-26 ◽  
Author(s):  
A. J. Watkins
2022 ◽  
Vol 7 (2) ◽  
pp. 2820-2839
Author(s):  
Saurabh L. Raikar ◽  
◽  
Dr. Rajesh S. Prabhu Gaonkar ◽  

<abstract> <p>Jaya algorithm is a highly effective recent metaheuristic technique. This article presents a simple, precise, and faster method to estimate stress strength reliability for a two-parameter, Weibull distribution with common scale parameters but different shape parameters. The three most widely used estimation methods, namely the maximum likelihood estimation, least squares, and weighted least squares have been used, and their comparative analysis in estimating reliability has been presented. The simulation studies are carried out with different parameters and sample sizes to validate the proposed methodology. The technique is also applied to real-life data to demonstrate its implementation. The results show that the proposed methodology's reliability estimates are close to the actual values and proceeds closer as the sample size increases for all estimation methods. Jaya algorithm with maximum likelihood estimation outperforms the other methods regarding the bias and mean squared error.</p> </abstract>


2019 ◽  
Vol 31 (4) ◽  
pp. 545-552
Author(s):  
Jason K. Freels ◽  
Daniel A. Timme ◽  
Joseph J. Pignatiello ◽  
Richard L. Warr ◽  
Raymond R. Hill

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fan Yang ◽  
Hu Ren ◽  
Zhili Hu

The maximum likelihood estimation is a widely used approach to the parameter estimation. However, the conventional algorithm makes the estimation procedure of three-parameter Weibull distribution difficult. Therefore, this paper proposes an evolutionary strategy to explore the good solutions based on the maximum likelihood method. The maximizing process of likelihood function is converted to an optimization problem. The evolutionary algorithm is employed to obtain the optimal parameters for the likelihood function. Examples are presented to demonstrate the proposed method. The results show that the proposed method is suitable for the parameter estimation of the three-parameter Weibull distribution.


Author(s):  
RS Sinha ◽  
AK Mukhopadhyay

The primary crusher is essential equipment employed for comminuting the mineral in processing plants. Any kind of failure of its components will accordingly hinder the performance of the plant. Therefore, to minimize sudden failures, analysis should be undertaken to improve performance and operational reliability of the crushers and its components. This paper considers the methods for analyzing failure rates of a jaw crusher and its critical components application of a two-parameter Weibull distribution in a mineral processing plant fitted using statistical tests such as goodness of fit and maximum likelihood estimation. Monte Carlo simulation, analysis of variance, and artificial neural network are also applied. Two-parameter Weibull distribution is found to be the best fit distribution using Kolmogorov–Smirnov test. Maximum likelihood estimation method is used to find out the shape and scale parameter of two-parameter Weibull distribution. Monte Carlo simulation generates 40 numbers of shape parameters, scale parameters, and time. Further, 40 numbers of Weibull distribution parameters are evaluated to examine the failure rate, significant difference, and regression coefficient using ANOVA. Artificial neural network with back-propagation algorithm is used to determine R2 and is compared with analysis of variance.


2017 ◽  
Vol 4 (2) ◽  
pp. 8-14
Author(s):  
J. A. Labban ◽  
H. H. Depheal

"This paper some of different methods to estimate the parameters of the 2-Paramaters Weibull distribution such as (Maximum likelihood Estimation, Moments, Least Squares, Term Omission). Mean square error will be considered to compare methods fits in case to select the best one. There by simulation will be implemented to generate different random sample of the 2-parameters Weibull distribution, those contain (n=10, 50, 100, 200) iteration each 1000 times."


Sign in / Sign up

Export Citation Format

Share Document