extended weibull distribution
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 1)

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiaofeng Liu ◽  
Zubair Ahmad ◽  
Saima K. Khosa ◽  
M. Yusuf ◽  
Osama Abdulaziz Alamri ◽  
...  

The spread of the COVID-19 epidemic, since December 2019, has caused much damage around the world, disturbed every aspect of daily life, and has become a serious health threat. The COVID-19 epidemic impacted nearly 150 countries around the globe between December 2019 and March 2020. Since December 2019, researchers have been trying to develop new suitable statistical models to adequately describe the behavior of this deadly pandemic. In this paper, a flexible statistical model has been proposed that can be used to model the lifetime events associated with this deadly pandemic. The new distribution is derived from the combination of an extended Weibull distribution and a trigonometric strategy referred to as the arcsine-X approach. Hence, the new model may be referred to as the arcsine new flexible extended Weibull model. The proposed model is capable of capturing five different behaviors of the hazard rate function. The model parameters are estimated via the maximum likelihood approach. Furthermore, a Monte Carlo study is conducted to assess the behavior of the estimators. Finally, the applicability of the new model is demonstrated using the data of fifty-three patients taken from a hospital in China.


Author(s):  
Seema Chettri ◽  
Bhanita Das

In this article a brief summary of some recent developments of Weibull lifetime models has been presented for a quick overview. Various extensions of the Weibull models and the properties of the extended Weibull distribution have been discussed. A brief discussion about the characteristics and shape behaviour has been presented in the tabular form. Finally, some future research topics have been given.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Refah Alotaibi ◽  
Mervat Khalifa ◽  
Lamya A. Baharith ◽  
Sanku Dey ◽  
H. Rezk

To study the heterogeneous nature of lifetimes of certain mechanical or engineering processes, a mixture model of some suitable lifetime distributions may be more appropriate and appealing as compared to simple models. This paper considers a mixture of the Marshall–Olkin extended Weibull distribution for efficient modeling of failure, survival, and COVID-19 data under classical and Bayesian perspectives based on type-II censored data. We derive several properties of the new distribution such as moments, incomplete moments, mean deviation, average lifetime, mean residual lifetime, Rényi entropy, Shannon entropy, and order statistics of the proposed distribution. Maximum likelihood and Bayes procedure are used to derive both point and interval estimates of the parameters involved in the model. Bayes estimators of the unknown parameters of the model are obtained under symmetric (squared error) and asymmetric (linear exponential (LINEX)) loss functions using gamma priors for both the shape and the scale parameters. Furthermore, approximate confidence intervals and Bayes credible intervals (CIs) are also obtained. Monte Carlo simulation study is carried out to assess the performance of the maximum likelihood estimators and Bayes estimators with respect to their estimated risk. The flexibility and importance of the proposed distribution are illustrated by means of four real datasets.


2021 ◽  
Vol 15 (4) ◽  
pp. 691-722 ◽  
Author(s):  
Lornah Lepetu ◽  
Broderick O. Oluyede ◽  
Boikanyo Makubate ◽  
Susan Foya ◽  
Precious Mdlongwa

Filomat ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 1927-1948
Author(s):  
Milan Jovanovic ◽  
Bojana Milosevic ◽  
Marko Obradovic ◽  
Zoran Vidovic

In this paper we estimate R = PfX < Yg when X and Y are independent random variables following the Peng-Yan extended Weibull distribution. We find maximum likelihood estimator of R and its asymptotic distribution. This asymptotic distribution is used to construct asymptotic confidence intervals. In the case of equal shape parameters, we derive the exact confidence intervals, too. A procedure for deriving bootstrap-p confidence intervals is presented. The UMVUE of R and the UMVUE of its variance are derived and also the Bayes point and interval estimator of R for conjugate priors are obtained. Finally, we perform a simulation study in order to compare these estimators and provide a real data example.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Saima K. Khosa ◽  
Ahmed Z. Afify ◽  
Zubair Ahmad ◽  
Mi Zichuan ◽  
Saddam Hussain ◽  
...  

In this article, a new approach is used to introduce an additional parameter to a continuous class of distributions. The new class is referred to as a new extended-F family of distributions. The new extended-Weibull distribution, as a special submodel of this family, is discussed. General expressions for some mathematical properties of the proposed family are derived, and maximum likelihood estimators of the model parameters are obtained. Furthermore, a simulation study is provided to evaluate the validity of the maximum likelihood estimators. Finally, the flexibility of the proposed method is illustrated via two applications to real data, and the comparison is made with the Weibull and some of its well-known extensions such as Marshall–Olkin Weibull, alpha power-transformed Weibull, and Kumaraswamy Weibull distributions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mi Zichuan ◽  
Saddam Hussain ◽  
Anum Iftikhar ◽  
Muhammad Ilyas ◽  
Zubair Ahmad ◽  
...  

During the past couple of years, statistical distributions have been widely used in applied areas such as reliability engineering, medical, and financial sciences. In this context, we come across a diverse range of statistical distributions for modeling heavy tailed data sets. Well-known distributions are log-normal, log-t, various versions of Pareto, log-logistic, Weibull, gamma, exponential, Rayleigh and its variants, and generalized beta of the second kind distributions, among others. In this paper, we try to supplement the distribution theory literature by incorporating a new model, called a new extended Weibull distribution. The proposed distribution is very flexible and exhibits desirable properties. Maximum likelihood estimators of the model parameters are obtained, and a Monte Carlo simulation study is conducted to assess the behavior of these estimators. Finally, we provide a comparative study of the newly proposed and some other existing methods via analyzing three real data sets from different disciplines such as reliability engineering, medical, and financial sciences. It has been observed that the proposed method outclasses well-known distributions on the basis of model selection criteria.


Sign in / Sign up

Export Citation Format

Share Document