(Mis-)matching type-B anomalies on the Higgs branch
Abstract Building on [1], we uncover new properties of type-B conformal anomalies for Coulomb-branch operators in continuous families of 4D $$ \mathcal{N} $$ N = 2 SCFTs. We study a large class of such anomalies on the Higgs branch, where conformal symmetry is spontaneously broken, and compare them with their counterpart in the CFT phase. In Lagrangian the- ories, the non-perturbative matching of the anomalies can be determined with a weak coupling Feynman diagram computation involving massive multi-loop banana integrals. We extract the part corresponding to the anomalies of interest. Our calculations support the general conjecture that the Coulomb-branch type-B conformal anomalies always match on the Higgs branch when the IR Coulomb-branch chiral ring is empty. In the opposite case, there are anomalies that do not match. An intriguing implication of the mismatch is the existence of a second covariantly constant metric on the conformal manifold (other than the Zamolodchikov metric), which imposes previously unknown restrictions on its holonomy group.