scholarly journals (Mis-)matching type-B anomalies on the Higgs branch

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
V. Niarchos ◽  
C. Papageorgakis ◽  
A. Pini ◽  
E. Pomoni

Abstract Building on [1], we uncover new properties of type-B conformal anomalies for Coulomb-branch operators in continuous families of 4D $$ \mathcal{N} $$ N = 2 SCFTs. We study a large class of such anomalies on the Higgs branch, where conformal symmetry is spontaneously broken, and compare them with their counterpart in the CFT phase. In Lagrangian the- ories, the non-perturbative matching of the anomalies can be determined with a weak coupling Feynman diagram computation involving massive multi-loop banana integrals. We extract the part corresponding to the anomalies of interest. Our calculations support the general conjecture that the Coulomb-branch type-B conformal anomalies always match on the Higgs branch when the IR Coulomb-branch chiral ring is empty. In the opposite case, there are anomalies that do not match. An intriguing implication of the mismatch is the existence of a second covariantly constant metric on the conformal manifold (other than the Zamolodchikov metric), which imposes previously unknown restrictions on its holonomy group.

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Matthew Buican ◽  
Hongliang Jiang

Abstract We systematically study 4D $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) that can be constructed via type IIB string theory on isolated hypersurface singularities (IHSs) embedded in ℂ4. We show that if a theory in this class has no $$ \mathcal{N} $$ N = 2-preserving exactly marginal deformation (i.e., the theory is isolated as an $$ \mathcal{N} $$ N = 2 SCFT), then it has no 1-form symmetry. This situation is somewhat reminiscent of 1-form symmetry and decomposition in 2D quantum field theory. Moreover, our result suggests that, for theories arising from IHSs, 1-form symmetries originate from gauge groups (with vanishing beta functions). One corollary of our discussion is that there is no 1-form symmetry in IHS theories that have all Coulomb branch chiral ring generators of scaling dimension less than two. In terms of the a and c central charges, this condition implies that IHS theories satisfying $$ a<\frac{1}{24}\left(15r+2f\right) $$ a < 1 24 15 r + 2 f and $$ c<\frac{1}{6}\left(3r+f\right) $$ c < 1 6 3 r + f (where r is the complex dimension of the Coulomb branch, and f is the rank of the continuous 0-form flavor symmetry) have no 1-form symmetry. After reviewing the 1-form symmetries of other classes of theories, we are motivated to conjecture that general interacting 4D $$ \mathcal{N} $$ N = 2 SCFTs with all Coulomb branch chiral ring generators of dimension less than two have no 1-form symmetry.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Marieke van Beest ◽  
Simone Giacomelli

Abstract We describe how the geometry of the Higgs branch of 5d superconformal field theories is transformed under movement along the extended Coulomb branch. Working directly with the (unitary) magnetic quiver, we demonstrate a correspondence between Fayet-Iliopoulos deformations in 3d and 5d mass deformations. When the Higgs branch has multiple cones, characterised by a collection of magnetic quivers, the mirror map is not globally well-defined, however we are able to utilize the correspondence to establish a local version of mirror symmetry. We give several detailed examples of deformations, including decouplings and weak-coupling limits, in (Dn, Dn) conformal matter theories, TN theory and its parent PN, for which we find new Lagrangian descriptions given by quiver gauge theories with fundamental and anti-symmetric matter.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Daniele Dorigoni ◽  
Philip Glass

First we compute the \mbox{S}^2S2 partition function of the supersymmetric \mathbb{CP}^{N-1}ℂℙN−1 model via localization and as a check we show that the chiral ring structure can be correctly reproduced. For the \mathbb{CP}^1ℂℙ1 case we provide a concrete realisation of this ring in terms of Bessel functions. We consider a weak coupling expansion in each topological sector and write it as a finite number of perturbative corrections plus an infinite series of instanton-anti-instanton contributions. To be able to apply resurgent analysis we then consider a non-supersymmetric deformation of the localized model by introducing a small unbalance between the number of bosons and fermions. The perturbative expansion of the deformed model becomes asymptotic and we analyse it within the framework of resurgence theory. Although the perturbative series truncates when we send the deformation parameter to zero we can still reconstruct non-perturbative physics out of the perturbative data in a nice example of Cheshire cat resurgence in quantum field theory. We also show that the same type of resurgence takes place when we consider an analytic continuation in the number of chiral fields from NN to r\in\mathbb{R}r∈ℝ. Although for generic real rr supersymmetry is still formally preserved, we find that the perturbative expansion of the supersymmetric partition function becomes asymptotic so that we can use resurgent analysis and only at the end take the limit of integer rr to recover the undeformed model.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Florian Loebbert ◽  
Julian Miczajka

Abstract Recently, infinite families of massive Feynman integrals were found to feature an unexpected Yangian symmetry. In the massless case, similar integrability properties are understood via the interpretation of individual Feynman integrals as correlators in the massless fishnet theory introduced by Gürdoğan and Kazakov. Here we seek for an analogous interpretation of the integrability of massive Feynman integrals. We contrast two approaches to define simple massive quantum field theories in four dimensions. First, we discuss spontaneous symmetry breaking in the massless bi-scalar fishnet theory. We then propose an alternative route to a massive fishnet theory by taking a double-scaling limit of $$ \mathcal{N} $$ N = 4 SYM theory on the Coulomb branch. Both approaches lead to a massive extension of the massless fishnet theory, differing in how masses enter into the propagators. In the latter theory, planar off-shell amplitudes are in one-to-one correspondence with precisely those massive Feynman integrals that were shown to be invariant under the Yangian. This suggests a re-investigation of Coulomb branch $$ \mathcal{N} $$ N = 4 SYM theory with regard to integrability. Finally, we demonstrate that in the case of spontaneous symmetry breaking, the original conformal symmetry leads to soft theorems for scattering amplitudes in the broken phase.


Author(s):  
S. Fujinaga ◽  
K. Maruyama ◽  
C.W. Williams ◽  
K. Sekhri ◽  
L. Dmochowski

Yumoto and Dmochowski (Cancer Res.27, 2098 (1967)) reported the presence of mature and immature type C leukemia virus particles in leukemic organs and tissues such as lymph nodes, spleen, thymus, liver, and kidneys of SJL/J strain mice with Hodgki's-like disease or reticulum cell neoplasm (type B). In an attempt to ascertain the possibility that this neoplasia may be of viral origin, experiments with induction and transmission of this neoplasm were carried out using cell-free extracts of leukemic organs from an SJL/J strain mouse with spontaneous disease.It has been possible to induce the disease in low-leukemia BALB/c and C3HZB strain mice and serially transfer the neoplasia by cell-free extracts of leukemic organs of these mice. Histological examination revealed the neoplasia to be of either reticulum cell-type A or type B. Serial transfer is now in its fifth passage. In addition leukemic spleen from another SJL/J strain mouse with spontaneous reticulum cell neoplasm (type A) was set up in tissue culture and is now in its 141st serial passage in vitro. Preliminary results indicate that cell-free material of 39th tissue culture passage can reproduce neoplasia in BALB/c mice.


Author(s):  
P. F. Flicker ◽  
V.S. Kulkarni ◽  
J. P. Robinson ◽  
G. Stubbs ◽  
B. R. DasGupta

Botulinum toxin is a potent neurotoxin produced by Clostridium botulinum. The toxin inhibits release of neurotransmitter, causing muscle paralysis. There are several serotypes, A to G, all of molecular weight about 150,000. The protein exists as a single chain or or as two chains, with two disulfide linkages. In a recent investigation on intracellular action of neurotoxins it was reported that type B neurotoxin can inhibit the release of Ca++-activated [3H] norepinephrine only if the disulfide bonds are reduced. In order to investigate possible structural changes in the toxin upon reduction of the disulfide bonds, we have prepared two-dimensional crystals of reduced type B neurotoxin. These two-dimensional crystals will be compared with those of the native (unreduced) type B toxin.


2004 ◽  
Vol 10 ◽  
pp. 37-38
Author(s):  
Lisa C. Moore ◽  
Archana Sadhu ◽  
Dorothy Martinez ◽  
Robin Kate Kelley
Keyword(s):  

2017 ◽  
Vol 23 ◽  
pp. 38-39
Author(s):  
Sheetal Malhotra ◽  
Shanaz Sikder ◽  
Elaine Cochran ◽  
Mattingly Megan ◽  
Gorden Phillip ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document