scholarly journals Statistics on Lefschetz thimbles: Bell/Leggett-Garg inequalities and the classical-statistical approximation

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Peter Millington ◽  
Zong-Gang Mou ◽  
Paul M. Saffin ◽  
Anders Tranberg

Abstract Inspired by Lefschetz thimble theory, we treat Quantum Field Theory as a statistical theory with a complex Probability Distribution Function (PDF). Such complex-valued PDFs permit the violation of Bell-type inequalities, which cannot be violated by a real-valued, non-negative PDF. In this paper, we consider the Classical-Statistical approximation in the context of Bell-type inequalities, viz. the familiar (spatial) Bell inequalities and the temporal Leggett-Garg inequalities. We show that the Classical-Statistical approximation does not violate temporal Bell-type inequalities, even though it is in some sense exact for a free theory, whereas the full quantum theory does. We explain the origin of this discrepancy, and point out the key difference between the spatial and temporal Bell-type inequalities. We comment on the import of this work for applications of the Classical-Statistical approximation.

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Vincenzo Branchina ◽  
Alberto Chiavetta ◽  
Filippo Contino

AbstractA formal expansion for the Green’s functions of a quantum field theory in a parameter $$\delta $$ δ that encodes the “distance” between the interacting and the corresponding free theory was introduced in the late 1980s (and recently reconsidered in connection with non-hermitian theories), and the first order in $$\delta $$ δ was calculated. In this paper we study the $${\mathcal {O}}(\delta ^2)$$ O ( δ 2 ) systematically, and also push the analysis to higher orders. We find that at each finite order in $$\delta $$ δ the theory is non-interacting: sensible physical results are obtained only resorting to resummations. We then perform the resummation of UV leading and subleading diagrams, getting the $${\mathcal {O}}(g)$$ O ( g ) and $${\mathcal {O}}(g^2)$$ O ( g 2 ) weak-coupling results. In this manner we establish a bridge between the two expansions, provide a powerful and unique test of the logarithmic expansion, and pave the way for further studies.


2014 ◽  
Vol 59 (11) ◽  
pp. 1060-1064
Author(s):  
P.A. Frolov ◽  
◽  
A.V. Shebeko ◽  

2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


2002 ◽  
Author(s):  
Marco Aurelio Do Rego Monteiro ◽  
V. B. Bezerra ◽  
E. M.F. Curado

Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Sign in / Sign up

Export Citation Format

Share Document