Logarithmic expansion of field theories: higher orders and resummations
AbstractA formal expansion for the Green’s functions of a quantum field theory in a parameter $$\delta $$ δ that encodes the “distance” between the interacting and the corresponding free theory was introduced in the late 1980s (and recently reconsidered in connection with non-hermitian theories), and the first order in $$\delta $$ δ was calculated. In this paper we study the $${\mathcal {O}}(\delta ^2)$$ O ( δ 2 ) systematically, and also push the analysis to higher orders. We find that at each finite order in $$\delta $$ δ the theory is non-interacting: sensible physical results are obtained only resorting to resummations. We then perform the resummation of UV leading and subleading diagrams, getting the $${\mathcal {O}}(g)$$ O ( g ) and $${\mathcal {O}}(g^2)$$ O ( g 2 ) weak-coupling results. In this manner we establish a bridge between the two expansions, provide a powerful and unique test of the logarithmic expansion, and pave the way for further studies.