scholarly journals Logarithmic expansion of field theories: higher orders and resummations

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Vincenzo Branchina ◽  
Alberto Chiavetta ◽  
Filippo Contino

AbstractA formal expansion for the Green’s functions of a quantum field theory in a parameter $$\delta $$ δ that encodes the “distance” between the interacting and the corresponding free theory was introduced in the late 1980s (and recently reconsidered in connection with non-hermitian theories), and the first order in $$\delta $$ δ was calculated. In this paper we study the $${\mathcal {O}}(\delta ^2)$$ O ( δ 2 ) systematically, and also push the analysis to higher orders. We find that at each finite order in $$\delta $$ δ the theory is non-interacting: sensible physical results are obtained only resorting to resummations. We then perform the resummation of UV leading and subleading diagrams, getting the $${\mathcal {O}}(g)$$ O ( g ) and $${\mathcal {O}}(g^2)$$ O ( g 2 ) weak-coupling results. In this manner we establish a bridge between the two expansions, provide a powerful and unique test of the logarithmic expansion, and pave the way for further studies.

2016 ◽  
Vol 24 (2) ◽  
Author(s):  
Luiz C. L. Botelho

AbstractWe analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject.


1999 ◽  
Vol 08 (02) ◽  
pp. 125-163 ◽  
Author(s):  
Louis Crane ◽  
David Yetter

We show that any 3D topological quantum field theory satisfying physically reasonable factorizability conditions has associated to it in a natural way a Hopf algebra object in a suitable tensor category. We also show that all objects in the tensor category have the structure of left-left crossed bimodules over the Hopf algebra object. For 4D factorizable topological quantum filed theories, we provide by analogous methods a construction of a Hopf algebra category.


2021 ◽  
pp. 237-252
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

We present a simple form of the Wightman axioms in a four-dimensional Minkowski space-time which are supposed to define a physically interesting interacting quantum field theory. Two important consequences follow from these axioms. The first is the invariance under CPT which implies, in particular, the equality of masses and lifetimes for particles and anti-particles. The second is the connection between spin and statistics. We give examples of interacting field theories and develop the perturbation expansion for Green functions. We derive the Feynman rules, both in configuration and in momentum space, for some simple interacting theories. The rules are unambiguous and allow, in principle, to compute any Green function at any order in perturbation.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


2021 ◽  
pp. 304-328
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Loop diagrams often yield ultraviolet divergent integrals. We introduce the concept of one-particle irreducible diagrams and develop the power counting argument which makes possible the classification of quantum field theories into non-renormalisable, renormalisable and super-renormalisable. We describe some regularisation schemes with particular emphasis on dimensional regularisation. The renormalisation programme is described at one loop order for φ‎4 and QED. We argue, without presenting the detailed proof, that the programme can be extended to any finite order in the perturbation expansion for every renormalisable (or super-renormalisable) quantum field theory. We derive the equation of the renormalisation group and explain how it can be used in order to study the asymptotic behaviour of Green functions. This makes it possible to introduce the concept of asymptotic freedom.


1994 ◽  
Vol 09 (27) ◽  
pp. 2555-2567
Author(s):  
PETER GRANDITS

We consider the finiteness conditions on the Yukawa couplings of a general quantum field theory for gauge groups SU (n)(n>6) and a rather general particle content. It is shown that in the class of theories considered (149 different particle contents), only two models are able to fulfill the finiteness conditions. Only one of these is supersymmetric. For the nonsupersymmetric one the appropriate Yukawa couplings are constructed explicitly.


2008 ◽  
Vol 20 (08) ◽  
pp. 933-949
Author(s):  
C. A. LINHARES ◽  
A. P. C. MALBOUISSON ◽  
I. RODITI

Starting from the complete Mellin representation of Feynman amplitudes for noncommutative vulcanized scalar quantum field theory, introduced in a previous publication, we generalize to this theory the study of asymptotic behaviors under scaling of arbitrary subsets of external invariants of any Feynman amplitude. This is accomplished in both convergent and renormalized amplitudes.


1989 ◽  
Vol 04 (07) ◽  
pp. 1735-1746 ◽  
Author(s):  
H. F. JONES ◽  
M. MONOYIOS

A recently proposed perturbative method for solving a self-interacting scalar φ4 field theory consists of writing the interaction as gφ2(1+δ) and expanding in powers of δ. The method contains an ambiguity in so far as one could modify the interaction Lagrangian by a factor λ(1−δ). The truncated expansion depends on the unphysical parameter, whereas the exact result does not. We exploit this ambiguity by assigning to λ the value for which the truncated result is stationary, thus minimizing its sensitivity to λ. The technique is applied to field theories in zero-and one-dimensional space-times and gives improved accuracy as compared to fixed λ.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Damiano Anselmi

Abstract We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman iϵ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major significance is that they offer a deeper understanding on the problem of unitarity in quantum field theory. In particular, they apply to “skeleton” diagrams, before integrating on the space components of the loop momenta and the phase spaces. In turn, the skeleton diagrams obey a spectral optical theorem, which gives the usual optical theorem for amplitudes, once the integrals on the space components of the loop momenta and the phase spaces are restored. The fakeon prescription/projection is implemented by dropping the thresholds that involve fakeon frequencies. We give examples at one loop (bubble, triangle, box, pentagon and hexagon), two loops (triangle with “diagonal”, box with diagonal) and arbitrarily many loops. We also derive formulas for the loop integrals with fakeons and relate them to the known formulas for the loop integrals with physical particles.


Sign in / Sign up

Export Citation Format

Share Document