scholarly journals Is SMEFT enough?

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Timothy Cohen ◽  
Nathaniel Craig ◽  
Xiaochuan Lu ◽  
Dave Sutherland

Abstract There are two canonical approaches to treating the Standard Model as an Effective Field Theory (EFT): Standard Model EFT (SMEFT), expressed in the electroweak symmetric phase utilizing the Higgs doublet, and Higgs EFT (HEFT), expressed in the broken phase utilizing the physical Higgs boson and an independent set of Goldstone bosons. HEFT encompasses SMEFT, so understanding whether SMEFT is sufficient motivates identifying UV theories that require HEFT as their low energy limit. This distinction is complicated by field redefinitions that obscure the naive differences between the two EFTs. By reformulating the question in a geometric language, we derive concrete criteria that can be used to distinguish SMEFT from HEFT independent of the chosen field basis. We highlight two cases where perturbative new physics must be matched onto HEFT: (i) the new particles derive all of their mass from electroweak symmetry breaking, and (ii) there are additional sources of electroweak symmetry breaking. Additionally, HEFT has a broader practical application: it can provide a more convergent parametrization when new physics lies near the weak scale. The ubiquity of models requiring HEFT suggests that SMEFT is not enough.

2010 ◽  
Vol 25 (09) ◽  
pp. 691-701
Author(s):  
TATSURU KIKUCHI

Recently, conceptually new physics beyond the Standard Model has been proposed by Georgi, where a new physics sector becomes conformal and provides "unparticle" which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving the unparticle and Higgs boson. Once the Higgs develops the vacuum expectation value (VEV), the conformal symmetry is broken and as a result, the mixing between the unparticle and the Higgs boson emerges. In the former part of this paper, we consider a natural realization of bosonic seesaw in the context of unparticle physics. In this framework, the negative mass squared or the electroweak symmetry breaking vacuum is achieved as a result of mass matrix diagonalization. So, the bosonic seesaw mechanism for the electroweak symmetry breaking can naturally be understood in the framework of unparticle physics. In the latter part of this paper, we consider the unparticle as a hidden sector of supersymmetry breaking, and give some phenomenological consequences of this scenario. The result shows that there is a possibility for the unparticle as a hidden sector in SUSY breaking sector, and can provide a solution to the μ problem in SUSY models.


1992 ◽  
Vol 07 (26) ◽  
pp. 6473-6492 ◽  
Author(s):  
YU. F. PIROGOV

The minimum nonlinear extension SU(3)×U(1)/SU(2)×U(1) to the Standard Model, where the Higgs doublet is a composite Goldstone boson, is investigated. The canonical nonlinear realization of the extended symmetry is constructed in the form maximally close to that of the Standard Model. The corresponding most general effective Lagrangian is built. A simplest linear realization of the extended symmetry in an extended fermion sector is found. The Higgs-Goldstone scenario of the electroweak symmetry breaking is outlined from the standpoint of the multi-TeV energy collider phenomenology.


2007 ◽  
Vol 22 (30) ◽  
pp. 5502-5512
Author(s):  
D. I. KAZAKOV

Review of recent developments in attempts to go beyond the Standard Model is given. We concentrate on three main unresolved problems: mechanism of electroweak symmetry breaking, expected new physics at the TeV scale (mainly SUSY) and the origin of the Dark matter.


2003 ◽  
Vol 18 (14) ◽  
pp. 967-975 ◽  
Author(s):  
J. G. KÖRNER ◽  
CHUN LIU

A supersymmetric model with two copies of the Standard Model gauge groups is constructed in the gauge mediated supersymmetry breaking scenario. The supersymmetry breaking messengers are in a simple form. The Standard Model is obtained after first step gauge symmetry breaking. In the case of one copy of the gauge interactions being strong, a scenario of electroweak symmetry breaking is discussed, and the gauginos are generally predicted to be heavier than the sfermions.


2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Emidio Gabrielli ◽  
Matti Heikinheimo ◽  
Kristjan Kannike ◽  
Antonio Racioppi ◽  
Martti Raidal ◽  
...  

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Oleksii Matsedonskyi ◽  
James Unwin ◽  
Qingyun Wang

Abstract Restoration of the electroweak symmetry at temperatures around the Higgs mass is linked to tight phenomenological constraints on many baryogenesis scenarios. A potential remedy can be found in mechanisms of electroweak symmetry non-restoration (SNR), in which symmetry breaking is extended to higher temperatures due to new states with couplings to the Standard Model. Here we show that, in the presence of a second Higgs doublet, SNR can be realized with only a handful of new fermions which can be identified as viable dark matter candidates consistent with all current observational constraints. The competing requirements on this class of models allow for SNR at temperatures up to ∼TeV, and imply the presence of sub-TeV new physics with sizable interactions with the Standard Model. As a result this scenario is highly testable with signals in reach of next-generation collider and dark matter direct detection experiments.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444007
Author(s):  
George Wei-Shu Hou

Fermion mass generation in the standard model was invented by Weinberg, while it is an old notion that strong Yukawa coupling could be the agent of electroweak symmetry breaking. Observation of the 126 GeV boson has crashed the prospects for such a heavy chiral quark doublet Q. However, the dilaton possibility can only be ruled out by confirming vector boson fusion with Run 2 data at the LHC, which starts only in 2015. We recast the [Formula: see text] condensation scenario as Fermi–Yang model v2.0. A Gap Equation has been constructed, with numerical solution demonstrating dynamical mQ generation; scale invariance of this equation may be consistent with a dilaton. Other consequences to be checked are [Formula: see text] "annihilation stars," and enhanced Bd →μ+μ-, KL →π0νν, and possibly sin ϕs. If verified in Nature, the Agent of BEH mechanism would differ from current perception, the 126 GeV boson would be the first New Physics at the LHC, and we would have enough CP violation for baryogenesis.


Sign in / Sign up

Export Citation Format

Share Document