scholarly journals New modular invariants in $$ \mathcal{N} $$ = 4 Super-Yang-Mills theory

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2∗ theory with respect to the squashing parameter b and mass parameter m, evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1/N expansion, these fourth derivatives are modular invariant functions of (τ,$$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1/N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1/N, they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS5× S5.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shai M. Chester ◽  
Silviu S. Pufu

Abstract When the SU(N) $$ \mathcal{N} $$ N = 4 super-Yang-Mills (SYM) theory with complexified gauge coupling τ is placed on a round four-sphere and deformed by an $$ \mathcal{N} $$ N = 2-preserving mass parameter m, its free energy F (m, τ,$$ \overline{\tau} $$ τ ¯ ) can be computed exactly using supersymmetric localization. In this work, we derive a new exact relation between the fourth derivative $$ {\partial}_m^4F\left(m,\tau, \overline{\tau}\right)\left|{{}_m}_{=0}\right. $$ ∂ m 4 F m τ τ ¯ m = 0 of the sphere free energy and the integrated stress-tensor multiplet four-point function in the $$ \mathcal{N} $$ N = 4 SYM theory. We then apply this exact relation, along with various other constraints derived in previous work (coming from analytic bootstrap, the mixed derivative $$ {\partial}_{\tau }{\partial}_{\overline{\tau}}{\partial}_m^2F\left(m,\tau, \overline{\tau}\right)\left|{{}_m}_{=0}\right. $$ ∂ τ ∂ τ ¯ ∂ m 2 F m τ τ ¯ m = 0 , and type IIB superstring theory scattering amplitudes) to determine various perturbative terms in the large N and large ’t Hooft coupling λ expansion of the $$ \mathcal{N} $$ N = 4 SYM correlator at separated points. In particular, we determine the leading large-λ term in the $$ \mathcal{N} $$ N = 4 SYM correlation function at order 1/N8. This is three orders beyond the planar limit.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shai M. Chester ◽  
Michael B. Green ◽  
Silviu S. Pufu ◽  
Yifan Wang ◽  
Congkao Wen

Abstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large-N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2, ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N2− 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R4 and D4R4 contact inter-actions, which, for the R4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2, ℤ) invariant.


1999 ◽  
Vol 14 (07) ◽  
pp. 1035-1047
Author(s):  
H. K. JASSAL ◽  
A. MUKHERJEE ◽  
R. P. SAXENA

The cosmological compactification of D=10, N=1 supergravity–super-Yang–Mills theory obtained from superstring theory is studied. The constraint of unbroken N=1 supersymmetry is imposed. A duality transformation is performed on the resulting consistency conditions. The original equations as well as the transformed equations are solved numerically to obtain new configurations with a nontrivial scale factor and a dynamical dilaton. It is shown that various classes of solutions are possible, which include cosmological solutions with no initial singularity.


2000 ◽  
Vol 585 (3) ◽  
pp. 517-553 ◽  
Author(s):  
Gordon Chalmers ◽  
Johanna Erdmenger

Author(s):  
John H. Schwarz

The duality between the type IIB superstring theory in an AdS 5  × S 5 background with N units of five-form flux and N = 4 super Yang–Mills theory with a U ( N ) gauge group has been studied extensively. My version of the construction of the superstring world-sheet action is reviewed here.


2017 ◽  
Vol 32 (12) ◽  
pp. 1740011
Author(s):  
Nathan Berkovits

In this contribution to the memorial volume, I will review Stanley Mandelstam’s work after 1980 and concentrate on his powerful application of light-cone gauge methods in super-Yang–Mills theory and superstring theory.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Michael B. Green ◽  
Congkao Wen

Abstract This paper concerns a special class of n-point correlation functions of operators in the stress tensor supermultiplet of $$ \mathcal{N} $$ N = 4 supersymmetric SU(N) Yang-Mills theory. These are “maximal U(1)Y-violating” correlators that violate the bonus U(1)Y charge by a maximum of 2(n − 4) units. We will demonstrate that such correlators satisfy SL(2, ℤ)-covariant recursion relations that relate n-point correlators to (n − 1)-point correlators in a manner analogous to the soft dilaton relations that relate the corresponding amplitudes in flat-space type IIB superstring theory. These recursion relations are used to determine terms in the large-N expansion of n-point maximal U(1)Y-violating correlators in the chiral sector, including correlators with four superconformal stress tensor primaries and (n − 4) chiral Lagrangian operators, starting from known properties of the n = 4 case. We concentrate on the first three orders in 1/N beyond the supergravity limit. The Mellin representations of the correlators are polynomials in Mellin variables, which correspond to higher derivative contact terms in the low-energy expansion of type IIB superstring theory in AdS5× S5 at the same orders as R4, d4R4 and d6R4. The coupling constant dependence of these terms is found to be described by non-holomorphic modular forms with holomorphic and anti-holomorphic weights (n − 4, 4 − n) that are SL(2, ℤ)-covariant derivatives of Eisenstein series and certain generalisations. This determines a number of non-leading contributions to U(1)Y-violating n-particle interactions (n > 4) in the low-energy expansion of type IIB superstring amplitudes in AdS5× S5.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yoonbai Kim ◽  
O-Kab Kwon ◽  
D. D. Tolla

Abstract We construct the 4-dimensional $$ \mathcal{N}=\frac{1}{2} $$ N = 1 2 and $$ \mathcal{N} $$ N = 1 inhomogeneously mass-deformed super Yang-Mills theories from the $$ \mathcal{N} $$ N = 1* and $$ \mathcal{N} $$ N = 2* theories, respectively, and analyse their supersymmetric vacua. The inhomogeneity is attributed to the dependence of background fluxes in the type IIB supergravity on a single spatial coordinate. This gives rise to inhomogeneous mass functions in the $$ \mathcal{N} $$ N = 4 super Yang-Mills theory which describes the dynamics of D3-branes. The Killing spinor equations for those inhomogeneous theories lead to the supersymmetric vacuum equation and a boundary condition. We investigate two types of solutions in the $$ \mathcal{N}=\frac{1}{2} $$ N = 1 2 theory, corresponding to the cases of asymptotically constant mass functions and periodic mass functions. For the former case, the boundary condition gives a relation between the parameters of two possibly distinct vacua at the asymptotic boundaries. Brane interpretations for corresponding vacuum solutions in type IIB supergravity are also discussed. For the latter case, we obtain explicit forms of the periodic vacuum solutions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Himanshu Raj

Abstract We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric (2, 0) AN−1 and DN theories, which have no Lagrangian description, but in the large N limit are holographically dual to weakly coupled M-theory on AdS7× S4 and AdS7× S4/ℤ2, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity R and the first higher derivative correction R4 vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.


Sign in / Sign up

Export Citation Format

Share Document