scholarly journals Building tensor networks for holographic states

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Pawel Caputa ◽  
Jorrit Kruthoff ◽  
Onkar Parrikar

Abstract We discuss a one-parameter family of states in two-dimensional holographic conformal field theories which are constructed via the Euclidean path integral of an effective theory on a family of hyperbolic slices in the dual bulk geometry. The effective theory in question is the CFT flowed under a $$ T\overline{T} $$ T T ¯ deformation, which “folds” the boundary CFT towards the bulk time-reflection symmetric slice. We propose that these novel Euclidean path integral states in the CFT can be interpreted as continuous tensor network (CTN) states. We argue that these CTN states satisfy a Ryu-Takayanagi-like minimal area upper bound on the entanglement entropies of boundary intervals, with the coefficient being equal to $$ \frac{1}{4{G}_N} $$ 1 4 G N ; the CTN corresponding to the bulk time-reflection symmetric slice saturates this bound. We also argue that the original state of the CFT can be written as a superposition of such CTN states, with the corresponding wavefunction being the bulk Hartle-Hawking wavefunction.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew Steinberg ◽  
Javier Prior

AbstractHyperinvariant tensor networks (hyMERA) were introduced as a way to combine the successes of perfect tensor networks (HaPPY) and the multiscale entanglement renormalization ansatz (MERA) in simulations of the AdS/CFT correspondence. Although this new class of tensor network shows much potential for simulating conformal field theories arising from hyperbolic bulk manifolds with quasiperiodic boundaries, many issues are unresolved. In this manuscript we analyze the challenges related to optimizing tensors in a hyMERA with respect to some quasiperiodic critical spin chain, and compare with standard approaches in MERA. Additionally, we show two new sets of tensor decompositions which exhibit different properties from the original construction, implying that the multitensor constraints are neither unique, nor difficult to find, and that a generalization of the analytical tensor forms used up until now may exist. Lastly, we perform randomized trials using a descending superoperator with several of the investigated tensor decompositions, and find that the constraints imposed on the spectra of local descending superoperators in hyMERA are compatible with the operator spectra of several minimial model CFTs.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Song He ◽  
Tokiro Numasawa ◽  
Tadashi Takayanagi ◽  
Kento Watanabe

2001 ◽  
Vol 16 (12) ◽  
pp. 2165-2173 ◽  
Author(s):  
FARDIN KHEIRANDISH ◽  
MOHAMMAD KHORRAMI

A general two-dimensional fractional supersymmetric conformal field theory is investigated. The structure of the symmetries of the theory is studied. Then, applying the generators of the closed subalgebra generated by (L-1,L0,G-1/3) and [Formula: see text], the two-point functions of the component fields of supermultiplets are calculated.


2000 ◽  
Vol 15 (03) ◽  
pp. 413-428 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We follow Witten's proposal1 in the calculation of conformal anomaly from (d + 1)-dimensional higher derivative gravity via AdS/CFT correspondence. It is assumed that some d-dimensional conformal field theories have a description in terms of above (d + 1)-dimensional higher derivative gravity which includes not only the Einstein term and cosmological constant but also curvature squared terms. The explicit expression for two-dimensional and four-dimensional anomalies is found, it contains higher derivative corrections. In particular, it is shown that not only Einstein gravity but also theory with the Lagrangian L =aR2 + bRμνRμν + Λ (even when a=0 or b=0) is five-dimensional bulk theory for [Formula: see text] super-Yang–Mills theory in AdS/CFT correspondence. Similarly, the d + 1 = 3 theory with (or without) Einstein term may describe d = 2 scalar or spinor CFT's. That gives new versions of bulk side which may be useful in different aspects. As application of our general formalism we find next-to-leading corrections to the conformal anomaly of [Formula: see text] supersymmetric theory from d = 5 AdS higher derivative gravity (low energy string effective action).


2013 ◽  
Vol 28 (32) ◽  
pp. 1350168 ◽  
Author(s):  
CHANGRIM AHN ◽  
DIEGO BOMBARDELLI

We propose exact S-matrices for the AdS 3/ CFT 2 duality between type IIB strings on AdS 3×S3×M4 with M4 = S3×S1 or T4 and the corresponding two-dimensional conformal field theories. We fix the two-particle S-matrices on the basis of the symmetries su(1|1) and su(1|1)×su(1|1). A crucial justification comes from the derivation of the all-loop Bethe ansatz matching exactly the recent conjecture proposed by Babichenko et al. [J. High Energy Phys.1003, 058 (2010), arXiv:0912.1723 [hep-th]] and Ohlsson Sax and Stefanski, Jr. [J. High Energy Phys.1108, 029 (2011), arXiv:1106.2558 [hep-th]].


2016 ◽  
Vol 31 (32) ◽  
pp. 1650170 ◽  
Author(s):  
Nobuyuki Ishibashi ◽  
Tsukasa Tada

Elaborating on our previous presentation, where the term dipolar quantization was introduced, we argue here that adopting [Formula: see text] as the Hamiltonian instead of [Formula: see text] yields an infinite circumference limit in two-dimensional conformal field theory. The new Hamiltonian leads to dipolar quantization instead of radial quantization. As a result, the new theory exhibits a continuous and strongly degenerated spectrum in addition to the Virasoro algebra with a continuous index. Its Hilbert space exhibits a different inner product than that obtained in the original theory. The idiosyncrasy of this particular Hamiltonian is its relation to the so-called sine-square deformation, which is found in the study of a certain class of quantum statistical systems. The appearance of the infinite circumference explains why the vacuum states of sine-square deformed systems are coincident with those of the respective closed-boundary systems.


Sign in / Sign up

Export Citation Format

Share Document