minimal models
Recently Published Documents


TOTAL DOCUMENTS

656
(FIVE YEARS 95)

H-INDEX

46
(FIVE YEARS 3)

2022 ◽  
Vol Volume 18, Issue 1 ◽  
Author(s):  
Antoine Amarilli ◽  
İsmail İlkan Ceylan

We study the problem of query evaluation on probabilistic graphs, namely, tuple-independent probabilistic databases over signatures of arity two. We focus on the class of queries closed under homomorphisms, or, equivalently, the infinite unions of conjunctive queries. Our main result states that the probabilistic query evaluation problem is #P-hard for all unbounded queries from this class. As bounded queries from this class are equivalent to a union of conjunctive queries, they are already classified by the dichotomy of Dalvi and Suciu (2012). Hence, our result and theirs imply a complete data complexity dichotomy, between polynomial time and #P-hardness, on evaluating homomorphism-closed queries over probabilistic graphs. This dichotomy covers in particular all fragments of infinite unions of conjunctive queries over arity-two signatures, such as negation-free (disjunctive) Datalog, regular path queries, and a large class of ontology-mediated queries. The dichotomy also applies to a restricted case of probabilistic query evaluation called generalized model counting, where fact probabilities must be 0, 0.5, or 1. We show the main result by reducing from the problem of counting the valuations of positive partitioned 2-DNF formulae, or from the source-to-target reliability problem in an undirected graph, depending on properties of minimal models for the query.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Lucía Córdova ◽  
Stefano Negro ◽  
Fidel I. Schaposnik Massolo

Abstract We analyze the Thermodynamic Bethe Ansatz (TBA) for various integrable S-matrices in the context of generalized T$$ \overline{\mathrm{T}} $$ T ¯ deformations. We focus on the sinh-Gordon model and its elliptic deformation in both its fermionic and bosonic realizations. We confirm that the determining factor for a turning point in the TBA, interpreted as a finite Hagedorn temperature, is the difference between the number of bound states and resonances in the theory. Implementing the numerical pseudo-arclength continuation method, we are able to follow the solutions to the TBA equations past the turning point all the way to the ultraviolet regime. We find that for any number k of resonances the pair of complex conjugate solutions below the turning point is such that the effective central charge is minimized. As k → ∞ the UV effective central charge goes to zero as in the elliptic sinh-Gordon model. Finally we uncover a new family of UV complete integrable theories defined by the bosonic counterparts of the S-matrices describing the Φ1,3 integrable deformation of non-unitary minimal models $$ \mathcal{M} $$ M 2,2n+3.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Dionysios Anninos ◽  
Beatrix Mühlmann

Abstract We study the genus expansion on compact Riemann surfaces of the gravitational path integral $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m in two spacetime dimensions with cosmological constant Λ > 0 coupled to one of the non-unitary minimal models ℳ2m − 1, 2. In the semiclassical limit, corresponding to large m, $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m admits a Euclidean saddle for genus h ≥ 2. Upon fixing the area of the metric, the path integral admits a round two-sphere saddle for h = 0. We show that the OPE coefficients for the minimal weight operators of ℳ2m − 1, 2 grow exponentially in m at large m. Employing the sewing formula, we use these OPE coefficients to obtain the large m limit of the partition function of ℳ2m − 1, 2 for genus h ≥ 2. Combining these results we arrive at a semiclassical expression for $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m . Conjecturally, $$ {\mathcal{Z}}_{\mathrm{grav}}^{(m)} $$ Z grav m admits a completion in terms of an integral over large random Hermitian matrices, known as a multicritical matrix integral. This matrix integral is built from an even polynomial potential of order 2m. We obtain explicit expressions for the large m genus expansion of multicritical matrix integrals in the double scaling limit. We compute invariant quantities involving contributions at different genera, both from a matrix as well as a gravity perspective, and establish a link between the two pictures. Inspired by the proposal of Gibbons and Hawking relating the de Sitter entropy to a gravitational path integral, our setup paves a possible path toward a microscopic picture of a two-dimensional de Sitter universe.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Özcan Sert ◽  
Muzaffer Adak

AbstractIn this paper we investigate the gravitational vacuum stars which called gravastars in the non-minimally coupled models with electromagnetic and gravitational fields. We consider two non-minimal models and find the corresponding spherically symmetric exact solutions in the interior of the star consisting of the dark energy condensate. Our models turn out to be Einstein–Maxwell model at the outside of the star and the solutions become the Reissner–Nordström solution. The physical quantities of these models are continuous and non-singular in some range of parameters and the exterior geometry continuously matches with the interior geometry at the surface. We calculate the matter mass, the total gravitational mass, the electric charge and redshift of the star for the two models. We notice that these quantities except redshift are dependent of a subtle free parameter, k, of the model. We also remark a wide redshift range from zero to infinity depending on one free parameter, $$\beta $$ β , in the second model.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Gui-Jun Ding ◽  
Stephen F. King ◽  
Jun-Nan Lu

Abstract We combine SO(10) Grand Unified Theories (GUTs) with A4 modular symmetry and present a comprehensive analysis of the resulting quark and lepton mass matrices for all the simplest cases. We focus on the case where the three fermion families in the 16 dimensional spinor representation form a triplet of Γ3 ≃ A4, with a Higgs sector comprising a single Higgs multiplet H in the 10 fundamental representation and one Higgs field $$ \overline{\Delta } $$ ∆ ¯ in the $$ \overline{\mathbf{126}} $$ 126 ¯ for the minimal models, plus one Higgs field Σ in the 120 for the non-minimal models, all with specified modular weights. The neutrino masses are generated by the type-I and/or type II seesaw mechanisms and results are presented for each model following an intensive numerical analysis where we have optimized the free parameters of the models in order to match the experimental data. For the phenomenologically successful models, we present the best fit results in numerical tabular form as well as showing the most interesting graphical correlations between parameters, including leptonic CP phases and neutrinoless double beta decay, which have yet to be measured, leading to definite predictions for each of the models.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Wei Fan ◽  
Angelos Fotopoulos ◽  
Stephan Stieberger ◽  
Tomasz R. Taylor ◽  
Bin Zhu

Abstract In a recent paper, here referred to as part I, we considered the celestial four-gluon amplitude with one gluon represented by the shadow transform of the corresponding primary field operator. This correlator is ill-defined because it contains branch points related to the presence of conformal blocks with complex spin. In this work, we adopt a procedure similar to minimal models and construct a single-valued completion of the shadow correlator, in the limit when the shadow is “soft.” By following the approach of Dotsenko and Fateev, we obtain an integral representation of such a single-valued correlator. This allows inverting the shadow transform and constructing a single-valued celestial four-gluon amplitude. This amplitude is drastically different from the original Mellin amplitude. It is defined over the entire complex plane and has correct crossing symmetry, OPE and bootstrap properties. It agrees with all known OPEs of celestial gluon operators. The conformal block spectrum consists of primary fields with dimensions ∆ = m + iλ, with integer m ≥ 1 and various, but always integer spin, in all group representations contained in the product of two adjoint representations.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Arpit Das ◽  
Chethan N. Gowdigere ◽  
Jagannath Santara

Abstract In the modular linear differential equation (MLDE) approach to classifying rational conformal field theories (RCFTs) both the MLDE and the RCFT are identified by a pair of non-negative integers [n,l]. n is the number of characters of the RCFT as well as the order of the MLDE that the characters solve and l, the Wronskian index, is associated to the structure of the zeroes of the Wronskian of the characters. In this paper, we study [3,0] and [3,2] MLDEs in order to classify the corresponding CFTs. We reduce the problem to a “finite” problem: to classify CFTs with central charge 0 < c ≤ 96, we need to perform 6, 720 computations for the former and 20, 160 for the latter. Each computation involves (i) first finding a simultaneous solution to a pair of Diophantine equations and (ii) computing Fourier coefficients to a high order and checking for positivity.In the [3,0] case, for 0 < c ≤ 96, we obtain many character-like solutions: two infinite classes and a discrete set of 303. After accounting for various categories of known solutions, including Virasoro minimal models, WZW CFTs, Franc-Mason vertex operator algebras and Gaberdiel-Hampapura-Mukhi novel coset CFTs, we seem to have seven hitherto unknown character-like solutions which could potentially give new CFTs. We also classify [3,2] CFTs for 0 < c ≤ 96: each CFT in this case is obtained by adjoining a constant character to a [2,0] CFT, whose classification was achieved by Mathur-Mukhi-Sen three decades ago.


Author(s):  
Dražen Adamović ◽  
Berislav Jandrić ◽  
Gordan Radobolja

We study the representation theory of the [Formula: see text] super Heisenberg–Virasoro vertex algebra at level zero, which extends the previous work on the Heisenberg–Virasoro vertex algebra [D. Adamović and G. Radobolja, Free field realization of the twisted Heisenberg–Virasoro algebra at level zero and its applications, J. Pure Appl. Algebra 219(10) (2015) 4322–4342; D. Adamović and G. Radobolja, Self-dual and logarithmic representations of the twisted Heisenberg–Virasoro algebra at level zero, Commun. Contemp. Math. 21(2) (2019) 1850008; Y. Billig, Representations of the twisted Heisenberg–Virasoro algebra at level zero, Can. Math. Bull. 46(4) (2003) 529–537] to the super case. We calculated all characters of irreducible highest weight representations by investigating certain Fock space representations. Quite surprisingly, we found that the maximal submodules of certain Verma modules are generated by subsingular vectors. The formulas for singular and subsingular vectors are obtained using screening operators appearing in a study of certain logarithmic vertex algebras [D. Adamović and A. Milas, On W-algebras associated to [Formula: see text] minimal models and their representations, Int. Math. Res. Notices 2010(20) (2010) 3896–3934].


2021 ◽  
Author(s):  
Matt Biddick ◽  
Kevin C. Burns
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document