scholarly journals The planar limit of $$ \mathcal{N} $$ = 2 superconformal quiver theories

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Bartomeu Fiol ◽  
Jairo Martfnez-Montoya ◽  
Alan Rios Fukelman

Abstract We compute the planar limit of both the free energy and the expectation value of the 1/2 BPS wilson loop for four dimensional $$ \mathcal{N} $$ N = 2 superconformal quiver theories, with a product of SU(N)s as gauge group and hi-fundamental matter. Supersymmetric localization reduces the problem to a multi-matrix model, that we rewrite in the zero­ instanton sector as an effective action involving an infinite number of double-trace terms, determined by the relevant extended Cartan matrix. We find that the results, as in the case of $$ \mathcal{N} $$ N = 2 SCFTs with a simple gauge group, can be written as sums over tree graphs. For the $$ \hat{A_1} $$ A 1 ̂ case, we find that the contribution of each tree can be interpreted as the partition function of a generalized Ising model defined on the tree; we conjecture that the partition functions of these models defined on trees satisfy the Lee-Yang property, i.e. all their zeros lie on the unit circle.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Simone Giombi ◽  
Bendeguz Offertaler

Abstract We study the half-BPS circular Wilson loop in $$ \mathcal{N} $$ N = 4 super Yang-Mills with orthogonal gauge group. By supersymmetric localization, its expectation value can be computed exactly from a matrix integral over the Lie algebra of SO(N). We focus on the large N limit and present some simple quantitative tests of the duality with type IIB string theory in AdS5× ℝℙ5. In particular, we show that the strong coupling limit of the expectation value of the Wilson loop in the spinor representation of the gauge group precisely matches the classical action of the dual string theory object, which is expected to be a D5-brane wrapping a ℝℙ4 subspace of ℝℙ5. We also briefly discuss the large N, large λ limits of the SO(N) Wilson loop in the symmetric/antisymmetric representations and their D3/D5-brane duals. Finally, we use the D5-brane description to extract the leading strong coupling behavior of the “bremsstrahlung function” associated to a spinor probe charge, or equivalently the normalization of the two-point function of the displacement operator on the spinor Wilson loop, and obtain agreement with the localization prediction.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Beccaria ◽  
A.A. Tseytlin

Abstract Localization approach to $$ \mathcal{N} $$ N = 2 superconformal SU(N) × SU(N) quiver theory leads to a non-Gaussian two-matrix model representation for the expectation value of BPS circular SU(N) Wilson loop $$ \left\langle \mathcal{W}\right\rangle $$ W . We study the subleading 1/N2 term in the large N expansion of $$ \left\langle \mathcal{W}\right\rangle $$ W at weak and strong coupling. We concentrate on the case of the symmetric quiver with equal gauge couplings which is equivalent to the ℤ2 orbifold of the SU(2N) $$ \mathcal{N} $$ N = 4 SYM theory. This orbifold gauge theory should be dual to type IIB superstring in AdS5 × (S5/ℤ2). We present a string theory argument suggesting that the 1/N2 term in $$ \left\langle \mathcal{W}\right\rangle $$ W in the orbifold theory should have the same strong-coupling asymptotics λ3/2 as in the $$ \mathcal{N} $$ N = 4 SYM case. We support this prediction on the gauge theory side by a numerical study of the localization matrix model. We also find a relation between the 1/N2 term in the Wilson loop expectation value and the derivative of the free energy of the orbifold gauge theory on 4-sphere.


2013 ◽  
Vol 21 ◽  
pp. 195-196
Author(s):  
AKINORI TANAKA

We study the 1/2 BPS condition of Wilson loop on squashed three-sphere, and find that the solution becomes torus knot or unknot. We also calculate the expectation value of 1/2 BPS Wilson loops by using localization technique with the gauge group U(2) and Wilson loop as fundamental representation. And it completely matches with known results.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Marco S. Bianchi

Abstract I consider three-point functions of twist-one operators in ABJM at weak coupling. I compute the structure constant of correlators involving one twist-one un-protected operator and two protected ones for a few finite values of the spin, up to two-loop order. As an application I enforce a limit on the gauge group ranks, in which I relate the structure constant for three chiral primary operators to the expectation value of a supersymmetric Wilson loop. Such a relation is then used to perform a successful five-loop test on the matrix model conjectured to describe the supersymmetric Wilson loop.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Soumangsu Chakraborty ◽  
Akikazu Hashimoto

Abstract We derive the geodesic equation for determining the Ryu-Takayanagi surface in AdS3 deformed by single trace $$ \mu T\overline{T} $$ μT T ¯ + $$ {\varepsilon}_{+}J\overline{T} $$ ε + J T ¯ + $$ {\varepsilon}_{-}T\overline{J} $$ ε − T J ¯ deformation for generic values of (μ, ε+, ε−) for which the background is free of singularities. For generic values of ε±, Lorentz invariance is broken, and the Ryu-Takayanagi surface embeds non-trivially in time as well as spatial coordinates. We solve the geodesic equation and characterize the UV and IR behavior of the entanglement entropy and the Casini-Huerta c-function. We comment on various features of these observables in the (μ, ε+, ε−) parameter space. We discuss the matching at leading order in small (μ, ε+, ε−) expansion of the entanglement entropy between the single trace deformed holographic system and a class of double trace deformed theories where a strictly field theoretic analysis is possible. We also comment on expectation value of a large rectangular Wilson loop-like observable.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Justin R. David ◽  
Jyotirmoy Mukherjee

Abstract We show that the entanglement entropy of D = 4 linearized gravitons across a sphere recently computed by Benedetti and Casini coincides with that obtained using the Kaluza-Klein tower of traceless transverse massive spin-2 fields on S1× AdS3. The mass of the constant mode on S1 saturates the Brietenholer-Freedman bound in AdS3. This condition also ensures that the entanglement entropy of higher spins determined from partition functions on the hyperbolic cylinder coincides with their recent conjecture. Starting from the action of the 2-form on S1× AdS5 and fixing gauge, we evaluate the entanglement entropy across a sphere as well as the dimensions of the corresponding twist operator. We demonstrate that the conformal dimensions of the corresponding twist operator agrees with that obtained using the expectation value of the stress tensor on the replica cone. For conformal p-forms in even dimensions it obeys the expected relations with the coefficients determining the 3-point function of the stress tensor of these fields.


2021 ◽  
pp. 1-35
Author(s):  
FERENC BENCS ◽  
PJOTR BUYS ◽  
LORENZO GUERINI ◽  
HAN PETERS

Abstract We investigate the location of zeros for the partition function of the anti-ferromagnetic Ising model, focusing on the zeros lying on the unit circle. We give a precise characterization for the class of rooted Cayley trees, showing that the zeros are nowhere dense on the most interesting circular arcs. In contrast, we prove that when considering all graphs with a given degree bound, the zeros are dense in a circular sub-arc, implying that Cayley trees are in this sense not extremal. The proofs rely on describing the rational dynamical systems arising when considering ratios of partition functions on recursively defined trees.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Bartomeu Fiol ◽  
Alan Rios Fukelman

Abstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of $$ \mathcal{N} $$ N = 2 SQCD on S4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ℝ4. Specifically, we compute all the terms with a single value of the ζ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ℝ4.


Author(s):  
Rodney J. Baxter

We consider the anisotropic Ising model on the triangular lattice with finite boundaries, and use Kaufman’s spinor method to calculate low-temperature series expansions for the partition function to high order. From these, we can obtain 108-term series expansions for the bulk, surface and corner free energies. We extrapolate these to all terms and thereby conjecture the exact results for each. Our results agree with the exactly known bulk-free energy and with Cardy and Peschel’s conformal invariance predictions for the dominant behaviour at criticality. For the isotropic case, they also agree with Vernier and Jacobsen’s conjecture for the 60 ° corners.


Sign in / Sign up

Export Citation Format

Share Document