scholarly journals Color confinement and Bose-Einstein condensation

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Masanori Hanada ◽  
Hidehiko Shimada ◽  
Nico Wintergerst

Abstract We propose a unified description of two important phenomena: color confinement in large-N gauge theory, and Bose-Einstein condensation (BEC). We focus on the confinement/deconfinement transition characterized by the increase of the entropy from N0 to N2, which persists in the weak coupling region. Indistinguishability associated with the symmetry group — SU(N) or O(N) in gauge theory, and SN permutations in the system of identical bosons — is crucial for the formation of the condensed (confined) phase. We relate standard criteria, based on off-diagonal long range order (ODLRO) for BEC and the Polyakov loop for gauge theory. The constant offset of the distribution of the phases of the Polyakov loop corresponds to ODLRO, and gives the order parameter for the partially-(de)confined phase at finite coupling. We demonstrate this explicitly for several quantum mechanical systems (i.e., theories at small or zero spatial volume) at weak coupling, and argue that this mechanism extends to large volume and/or strong coupling. This viewpoint may have implications for confinement at finite N, and for quantum gravity via gauge/gravity duality.

2006 ◽  
Vol 20 (30n31) ◽  
pp. 5204-5213 ◽  
Author(s):  
YOJI OHASHI

We discuss the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. A tunable pairing interaction associated with the Feshbach resonance is shown to naturally lead to the BCS-BEC crossover, where the character of superfluidity continuously changes from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) type to the Bose-Einstein condensation (BEC) of tightly bound molecules, as one decreases the threshold energy 2ν of the Feshbach resonance. We also discuss effects of a trap, as well as the p-wave BCS-BEC crossover adjusted by a p-wave Feshbach resonance.


Author(s):  
Klaus Morawetz

The Bose–Einstein condensation and appearance of superfluidity and superconductivity are introduced from basic phenomena. A systematic theory based on the asymmetric expansion of chapter 11 is shown to correct the T-matrix from unphysical multiple-scattering events. The resulting generalised Soven scheme provides the Beliaev equations for Boson’s and the Nambu–Gorkov equations for fermions without the usage of anomalous and non-conserving propagators. This systematic theory allows calculating the fluctuations above and below the critical parameters. Gap equations and Bogoliubov–DeGennes equations are derived from this theory. Interacting Bose systems with finite temperatures are discussed with successively better approximations ranging from Bogoliubov and Popov up to corrected T-matrices. For superconductivity, the asymmetric theory leading to the corrected T-matrix allows for establishing the stability of the condensate and decides correctly about the pair-breaking mechanisms in contrast to conventional approaches. The relation between the correlated density from nonlocal kinetic theory and the density of Cooper pairs is shown.


2003 ◽  
Vol 5 (2) ◽  
pp. S119-S123 ◽  
Author(s):  
T G Tiecke ◽  
M Kemmann ◽  
Ch Buggle ◽  
I Shvarchuck ◽  
W von Klitzing ◽  
...  

1998 ◽  
Vol 57 (6) ◽  
pp. R4114-R4117 ◽  
Author(s):  
D. J. Han ◽  
R. H. Wynar ◽  
Ph. Courteille ◽  
D. J. Heinzen

Nature ◽  
2004 ◽  
Vol 432 (7018) ◽  
pp. 691-694 ◽  
Author(s):  
J. P. Eisenstein ◽  
A. H. MacDonald

Sign in / Sign up

Export Citation Format

Share Document