scholarly journals New physics explanations of aμ in light of the FNAL muon g − 2 measurement

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Peter Athron ◽  
Csaba Balázs ◽  
Douglas H. J. Jacob ◽  
Wojciech Kotlarski ◽  
Dominik Stöckinger ◽  
...  

Abstract The Fermilab Muon g −2 experiment recently reported its first measurement of the anomalous magnetic moment $$ {a}_{\mu}^{\mathrm{FNAL}} $$ a μ FNAL , which is in full agreement with the previous BNL measurement and pushes the world average deviation $$ \Delta {a}_{\mu}^{2021} $$ ∆ a μ 2021 from the Standard Model to a significance of 4.2σ. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for aμ, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large ∆aμ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large ∆aμ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the aμ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of aμ only in specific versions and in specific parameter ranges. Among all models with up to three fields, only models with chirality enhancements can accommodate aμ and dark matter simultaneously. The MSSM can simultaneously explain aμ and dark matter for Bino-like LSP in several coannihilation regions. Allowing under abundance of the dark matter relic density, the Higgsino- and particularly Wino-like LSP scenarios become promising explanations of the aμ result.

1989 ◽  
Vol 04 (28) ◽  
pp. 2757-2766 ◽  
Author(s):  
THOMAS G. RIZZO

Although absent at the tree level in models with only doublet and singlet Higgs representations, the WZH coupling can be induced at the one-loop level. We examine the size of this induced coupling in the two Higgs doublet model due to fermion as well as Higgs/gauge boson loops. Such couplings could provide a new mechanism for charged Higgs production at colliders and are ‘backgrounds’ to new physics beyond the Standard Model. We find, however, that these couplings are very weak for all regions of the parameter space explored.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850169 ◽  
Author(s):  
E. Di Salvo ◽  
F. Fontanelli ◽  
Z. J. Ajaltouni

We examine in detail the semileptonic decay [Formula: see text], which may confirm previous hints, from the analogous [Formula: see text] decay, of a new physics beyond the Standard Model. First of all, starting from rather general assumptions, we predict the partial width of the decay. Then we analyze the effects of five possible new physics interactions, adopting in each case five different form factors. In particular, for each term beyond the Standard Model, we find some constraints on the strength and phase of the coupling, which we combine with those found by other authors in analyzing the analogous semileptonic decays of [Formula: see text]. Our analysis involves some dimensionless quantities, substantially independent of the form factor, but which, owing to the constraints, turn out to be strongly sensitive to the kind of nonstandard interaction. We also introduce a criterion thanks to which one can discriminate among the various new physics terms: the left-handed current and the two-Higgs-doublet model appear privileged, with a neat preference for the former interaction. Finally, we suggest a differential observable that could, in principle, help to distinguish between the two cases.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Oleksii Matsedonskyi ◽  
James Unwin ◽  
Qingyun Wang

Abstract Restoration of the electroweak symmetry at temperatures around the Higgs mass is linked to tight phenomenological constraints on many baryogenesis scenarios. A potential remedy can be found in mechanisms of electroweak symmetry non-restoration (SNR), in which symmetry breaking is extended to higher temperatures due to new states with couplings to the Standard Model. Here we show that, in the presence of a second Higgs doublet, SNR can be realized with only a handful of new fermions which can be identified as viable dark matter candidates consistent with all current observational constraints. The competing requirements on this class of models allow for SNR at temperatures up to ∼TeV, and imply the presence of sub-TeV new physics with sizable interactions with the Standard Model. As a result this scenario is highly testable with signals in reach of next-generation collider and dark matter direct detection experiments.


2007 ◽  
Vol 22 (30) ◽  
pp. 5550-5560
Author(s):  
A. BETTINI

Astroparticle is a very wide, expanding, sector of Physics; this report covers only a fraction of it complementing the plenary reports of Y. Takahashi and K. Inoue. I will focus, in particular, on the experimental evidence of new physics, beyond the Standard Model. Astroparticle and accelerator experiments will give complementary tools in the search of new particles, like those of the dark matter, and new fundamental fields, like the inflaton.


2001 ◽  
Vol 16 (28) ◽  
pp. 4547-4565 ◽  
Author(s):  
YUE-LIANG WU ◽  
YU-FENG ZHOU

The measurement of sin 2β is discussed within and beyond the standard model. In the presence of new physics, the angle β extracted from the global fit (denoted by [Formula: see text]) and the one extracted from B→J/ψKS(denoted by βJ/ψ) are in general all different from the "true" angle β which is the weak phase of CKM matrix element [Formula: see text]. Possible new physics effects on the ratio [Formula: see text] is studied and parametrized in a most general form. It is shown that the ratio Rβmay provide a useful tool in probing new physics. The experimental value of Rβis obtained through an update of the global fit of the unitarity triangle with the latest data and found to be less than unity at 1σ level. The new physics effects on Rβfrom the models with minimum flavor violation (MFV) and the standard model with two-Higgs-doublet (S2HDM) are studied in detail. It is found that the MFV models seem to give a relative large value Rβ≥1. With the current data, this may indicate that this kind of new physics may be disfavored and alternative new physics with additional phases appears more relevant. As an illustration for models with additional phase beyond CKM phase, the S2HDM effects on Rβare studied and found to be easily coincide with the data due to the flavor changing neutral Higgs interaction.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Nanako Shitara ◽  
Nodoka Yamanaka ◽  
Bijaya Kumar Sahoo ◽  
Toshio Watanabe ◽  
Bhanu Pratap Das

Abstract We report theoretical results of the electric dipole moment (EDM) of 210Fr which arises from the interaction of the EDM of an electron with the internal electric field in an atom and the scalar-pseudoscalar electron-nucleus interaction; the two dominant sources of CP violation in this atom. Employing the relativistic coupled-cluster theory, we evaluate the enhancement factors for these two CP violating interactions to an accuracy of about 3% and analyze the contributions of the many-body effects. These two quantities in combination with the projected sensitivity of the 210Fr EDM experiment provide constraints on new physics beyond the Standard Model. Particularly, we demonstrate that their precise values are necessary to account for the effect of the bottom quark in models in which the Higgs sector is augmented by nonstandard Yukawa interactions such as the two-Higgs doublet model.


2012 ◽  
Vol 27 (16) ◽  
pp. 1230015 ◽  
Author(s):  
TAKESHI FUKUYAMA

This is a theoretical review of exploration of new physics beyond the Standard Model (SM) in the electric dipole moment (EDM) in elementary particles, atoms and molecule. EDM is a very important CP violating phenomenon and sensitive to new physics. Starting with the estimations of EDM of quarks–leptons in SM, we explore new signals beyond SM. However, these works drive us to wider frontiers where we search fundamental physics using atoms and molecules and vice versa. Paramagnetic atoms and molecules have great enhancement factor on electron EDM. Diamagnetic atoms and molecules are very sensitive to nuclear P and T odd processes. Thus EDM becomes the keyword not only of New Physics but also of unprecedented fruitful collaborations among particle, atomic and molecular physics. This review intends to help such collaborations over a wide range of physicists.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Ning Chen ◽  
Tao Han ◽  
Shuailong Li ◽  
Shufang Su ◽  
Wei Su ◽  
...  

Abstract We explore the extent to which future precision measurements of the Standard Model (SM) observables at the proposed Z-factories and Higgs factories may have impacts on new physics beyond the Standard Model, as illustrated by studying the Type-I Two-Higgs-doublet model (Type-I 2HDM). We include the contributions from the heavy Higgs bosons at the tree-level and at the one-loop level in a full model-parameter space. While only small tan β region is strongly constrained at tree level, the large tan β region gets constrained at loop level due to tan β enhanced tri-Higgs couplings. We perform a multiple variable χ2 fit with non-alignment and non-degenerate masses. We find that the allowed parameter ranges could be tightly constrained by the future Higgs precision measurements, especially for small and large values of tan β. Indirect limits on the masses of heavy Higgs bosons can be obtained, which can be complementary to the direct searches of the heavy Higgs bosons at hadron colliders. We also find that the expected accuracies at the Z-pole and at a Higgs factory are quite complementary in constraining mass splittings of heavy Higgs bosons. The typical results are | cos(β − α)| < 0.05, |∆mΦ| < 200 GeV, and tan β ≳ 0.3. The reaches from CEPC, Fcc-ee and ILC are also compared, for both Higgs and Z-pole precision measurements. Comparing to the Type-II 2HDM, the 95% C.L. allowed range of cos(β − α) is larger, especially for large values of tan β.


2020 ◽  
Author(s):  
Stephane Maes

In a multi-fold universe, gravity emerges from entanglement through the multi-fold mechanisms. As a result, gravity-like effects appear in between entangled particles or regions. When applied to astrophysics, these effects are analogous to additional matter within or around galaxies. This way, we recover behaviors that match expected and observed effects when dark matter would be present or missing. No New Physics is introduced in terms of new particles beyond the Standard Model or modifying long range gravity: only the modeling of gravity as emerging from entanglement, in a multi-fold universe.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044005
Author(s):  
Francesco Guescini

Many theories beyond the Standard Model predict new phenomena accessible by the Lhc. Searches for new physics are performed using the Atlas experiment at the Lhc focusing on exotic signatures that are predicted in several theories, excluding supersymmetry. The results of recent searches using 13 TeV data, with the exception of those for Dark Matter signatures, and their interplay and interpretation are presented. Prospects for searches at the High Luminosity Lhc are also discussed.


Sign in / Sign up

Export Citation Format

Share Document