scholarly journals Exact expressions for n-point maximal U(1)Y-violating integrated correlators in SU(N) $$ \mathcal{N} $$ = 4 SYM

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Daniele Dorigoni ◽  
Michael B. Green ◽  
Congkao Wen

Abstract The exact expressions for integrated maximal U(1)Y violating (MUV) n-point correlators in SU(N) $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory are determined. The analysis generalises previous results on the integrated correlator of four superconformal primaries and is based on supersymmetric localisation. The integrated correlators are functions of N and τ = θ/(2π) + 4πi/$$ {g}_{YM}^2 $$ g YM 2 , and are expressed as two-dimensional lattice sums that are modular forms with holomorphic and anti-holomorphic weights (w, −w) where w = n − 4. The correlators satisfy Laplace-difference equations that relate the SU(N+1), SU(N) and SU(N−1) expressions and generalise the equations previously found in the w = 0 case. The correlators can be expressed as infinite sums of Eisenstein modular forms of weight (w, −w). For any fixed value of N the perturbation expansion of this correlator is found to start at order ($$ {g}_{YM}^2 $$ g YM 2 N)w. The contributions of Yang-Mills instantons of charge k > 0 are of the form qkf(gYM), where q = e2πiτ and f(gYM) = O($$ {g}_{YM}^{-2w} $$ g YM − 2 w ) when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Anti-instanton contributions have charge k < 0 and are of the form $$ {\overline{q}}^{\left|k\right|}\hat{f}\left({g}_{YM}\right) $$ q ¯ k f ̂ g YM , where $$ \hat{f}\left({g}_{YM}\right)=O\left({g}_{YM}^{2w}\right) $$ f ̂ g YM = O g YM 2 w when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Properties of the large-N expansion are in agreement with expectations based on the low energy expansion of flat-space type IIB superstring amplitudes. We also comment on the identification of n-point free-field MUV correlators with the integrands of (n − 4)-loop perturbative contributions to the four-point correlator. In particular, we emphasise the important rôle of SL(2, ℤ)-covariance in the construction.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Michael B. Green ◽  
Congkao Wen

Abstract This paper concerns a special class of n-point correlation functions of operators in the stress tensor supermultiplet of $$ \mathcal{N} $$ N = 4 supersymmetric SU(N) Yang-Mills theory. These are “maximal U(1)Y-violating” correlators that violate the bonus U(1)Y charge by a maximum of 2(n − 4) units. We will demonstrate that such correlators satisfy SL(2, ℤ)-covariant recursion relations that relate n-point correlators to (n − 1)-point correlators in a manner analogous to the soft dilaton relations that relate the corresponding amplitudes in flat-space type IIB superstring theory. These recursion relations are used to determine terms in the large-N expansion of n-point maximal U(1)Y-violating correlators in the chiral sector, including correlators with four superconformal stress tensor primaries and (n − 4) chiral Lagrangian operators, starting from known properties of the n = 4 case. We concentrate on the first three orders in 1/N beyond the supergravity limit. The Mellin representations of the correlators are polynomials in Mellin variables, which correspond to higher derivative contact terms in the low-energy expansion of type IIB superstring theory in AdS5× S5 at the same orders as R4, d4R4 and d6R4. The coupling constant dependence of these terms is found to be described by non-holomorphic modular forms with holomorphic and anti-holomorphic weights (n − 4, 4 − n) that are SL(2, ℤ)-covariant derivatives of Eisenstein series and certain generalisations. This determines a number of non-leading contributions to U(1)Y-violating n-particle interactions (n > 4) in the low-energy expansion of type IIB superstring amplitudes in AdS5× S5.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


2004 ◽  
Vol 82 (7) ◽  
pp. 541-548
Author(s):  
D.G.C. McKeon

Antisymmetric tensor gauge fields ϕab(η) are formulated on the surface of a sphere S4(η2 = a2) embedded in five dimensions. Such compact manifolds occur in the dimensional reduction of higher dimensional spaces that naturally occur in string theories. The free field model is equivalent to a scalar model on this sphere. Interactions with gauge fields are discussed. It is feasable to formulate models for interactions with U(1) gauge fields Aa(η) that are akin to those of Freedman and Townsend in flat space. In addition, it proves possible to have a novel interaction of ϕab with Aa and a spinor field Ψ(η) on S4 with both Abelian and non-Abelian gauge invariance. In these models, Aa plays the role of a Stueckelberg field.PACS No.: 11.30.Ly


2000 ◽  
Vol 15 (03) ◽  
pp. 413-428 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We follow Witten's proposal1 in the calculation of conformal anomaly from (d + 1)-dimensional higher derivative gravity via AdS/CFT correspondence. It is assumed that some d-dimensional conformal field theories have a description in terms of above (d + 1)-dimensional higher derivative gravity which includes not only the Einstein term and cosmological constant but also curvature squared terms. The explicit expression for two-dimensional and four-dimensional anomalies is found, it contains higher derivative corrections. In particular, it is shown that not only Einstein gravity but also theory with the Lagrangian L =aR2 + bRμνRμν + Λ (even when a=0 or b=0) is five-dimensional bulk theory for [Formula: see text] super-Yang–Mills theory in AdS/CFT correspondence. Similarly, the d + 1 = 3 theory with (or without) Einstein term may describe d = 2 scalar or spinor CFT's. That gives new versions of bulk side which may be useful in different aspects. As application of our general formalism we find next-to-leading corrections to the conformal anomaly of [Formula: see text] supersymmetric theory from d = 5 AdS higher derivative gravity (low energy string effective action).


2011 ◽  
Vol 126 (4) ◽  
pp. 597-611 ◽  
Author(s):  
M. Hanada ◽  
S. Matsuura ◽  
F. Sugino

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luis F. Alday

Abstract We study non-planar correlators in $$ \mathcal{N} $$ N = 4 super-Yang-Mills in Mellin space. We focus in the stress tensor four-point correlator to order 1/N4 and in a strong coupling expansion. This can be regarded as the genus-one four-point graviton amplitude of type IIB string theory on AdS5× S5 in a low energy expansion. Both the loop supergravity result as well as the tower of stringy corrections have a remarkable simple structure in Mellin space, making manifest important properties such as the correct flat space limit and the structure of UV divergences.


Sign in / Sign up

Export Citation Format

Share Document