Radiative seesaw corrections and charged-lepton decays in a model with soft flavour violation
Abstract We consider the one-loop radiative corrections to the light-neutrino mass matrix and their consequences for the predicted branching ratios of the five lepton-flavour-violating decays $$ {\mathrm{\ell}}_1^{-}\to {\mathrm{\ell}}_2^{-}{\mathrm{\ell}}_3^{+}{\mathrm{\ell}}_3^{-} $$ ℓ 1 − → ℓ 2 − ℓ 3 + ℓ 3 − in a two-Higgs-doublet model furnished with the type-I seesaw mechanism and soft lepton-flavour violation. We find that the radiative corrections are very significant; they may alter the predicted branching ratios by several orders of magnitude and, in particular, they may help explain why BR (μ− → e−e+e−) is strongly suppressed relative to the branching ratios of the decays of the τ−. We conclude that, in any serious numerical assessment of the predictions of this model, it is absolutely necessary to take into account the one-loop radiative corrections to the light-neutrino mass matrix.