scholarly journals Euclidean D-branes in type IIB string theory on Calabi-Yau threefolds

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Sergei Alexandrov ◽  
Ashoke Sen ◽  
Bogdan Stefański

Abstract We compute the contribution of Euclidean D-branes in type IIB string theory on Calabi-Yau threefolds to the metric on the hypermultiplet moduli space in the large volume, weak coupling limit. Our results are in perfect agreement with the predictions based on S-duality, mirror symmetry and supersymmetry.

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sergei Alexandrov ◽  
Ashoke Sen ◽  
Bogdan Stefański

Abstract Type IIA string theory compactified on a Calabi-Yau threefold has a hypermultiplet moduli space whose metric is known to receive non-perturbative corrections from Euclidean D2-branes wrapped on 3-cycles. These corrections have been computed earlier by making use of mirror symmetry, S-duality and twistorial description of quaternionic geometries. In this paper we compute the leading corrections in each homology class using a direct world-sheet approach without relying on any duality symmetry or supersymmetry. Our results are in perfect agreement with the earlier predictions.


2016 ◽  
Vol 2016 ◽  
pp. 1-17
Author(s):  
Shaaban Khalil ◽  
Ahmad Moursy ◽  
Ali Nassar

We review moduli stabilization in type IIB string theory compactification with fluxes. We focus on KKLT and Large Volume Scenario (LVS). We show that the predicted soft SUSY breaking terms in KKLT model are not phenomenological viable. In LVS, the following result for scalar mass, gaugino mass, and trilinear term is obtained:m0=m1/2=-A0=m3/2, which may account for Higgs mass limit ifm3/2~O(1.5) TeV. However, in this case, the relic abundance of the lightest neutralino cannot be consistent with the measured limits. We also study the cosmological consequences of moduli stabilization in both models. In particular, the associated inflation models such as racetrack inflation and Kähler inflation are analyzed. Finally, the problem of moduli destabilization and the effect of string moduli backreaction on the inflation models are discussed.


2008 ◽  
Vol 23 (01) ◽  
pp. 1-16
Author(s):  
JOSEPH P. CONLON

Nature generates many hierarchically different scales. It is necessary to explain where these scales come from and how they are related. Three such scales are the weak scale, the scale associated with axion physics, and the scale associated with neutrino masses. I review the large volume models that arise in flux compactifications of type IIB string theory and explain how an intermediate string scale can quantitatively explain the above three scales. The models also predict a new physical scale at 1 MeV, associated to a gravitationally coupled scalar.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Alexander Baur ◽  
Moritz Kade ◽  
Hans Peter Nilles ◽  
Saúl Ramos-Sánchez ◽  
Patrick K. S. Vaudrevange

Abstract Modular symmetries naturally combine with traditional flavor symmetries and $$ \mathcal{CP} $$ CP , giving rise to the so-called eclectic flavor symmetry. We apply this scheme to the two-dimensional ℤ2 orbifold, which is equipped with two modular symmetries SL(2, ℤ)T and SL(2, ℤ)U associated with two moduli: the Kähler modulus T and the complex structure modulus U. The resulting finite modular group is ((S3× S3) ⋊ ℤ4) × ℤ2 including mirror symmetry (that exchanges T and U) and a generalized $$ \mathcal{CP} $$ CP -transformation. Together with the traditional flavor symmetry (D8× D8)/ℤ2, this leads to a huge eclectic flavor group with 4608 elements. At specific regions in moduli space we observe enhanced unified flavor symmetries with as many as 1152 elements for the tetrahedral shaped orbifold and $$ \left\langle T\right\rangle =\left\langle U\right\rangle =\exp \left(\frac{\pi \mathrm{i}}{3}\right) $$ T = U = exp π i 3 . This rich eclectic structure implies interesting (modular) flavor groups for particle physics models derived form string theory.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Fotis Farakos ◽  
George Tringas ◽  
Thomas Van Riet

Abstract We discuss flux compactifications of IIA string theory on G2 holonomy spaces with O2/O6-planes to three dimensions and find two classes of solutions: (1) No-scale Minkowski vacua from NSNS 3-form fluxes and RR 4-form fluxes. (2) By adding Romans mass we find AdS$$_3$$3 vacua for which the AdS scale can be decoupled completely from the KK scale while the solution is at tunable weak coupling and large volume. For the AdS$$_3$$3 vacuum we only have a proper 3D description (i.e. smeared orientifold description) of the solution like the 4D analogue of IIA moduli stabilization from fluxes and O6-planes. This 3D description reveals that moduli with non-compact moduli spaces can be stabilized at the classical level. For both types of vacua we can have supersymmetry or not.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Brice Bastian ◽  
Thomas W. Grimm ◽  
Damian van de Heisteeg

Abstract We study the charge-to-mass ratios of BPS states in four-dimensional $$ \mathcal{N} $$ N = 2 supergravities arising from Calabi-Yau threefold compactifications of Type IIB string theory. We present a formula for the asymptotic charge-to-mass ratio valid for all limits in complex structure moduli space. This is achieved by using the sl(2)-structure that emerges in any such limit as described by asymptotic Hodge theory. The asymptotic charge-to-mass formula applies for sl(2)-elementary states that couple to the graviphoton asymptotically. Using this formula, we determine the radii of the ellipsoid that forms the extremality region of electric BPS black holes, which provides us with a general asymptotic bound on the charge-to-mass ratio for these theories. Finally, we comment on how these bounds for the Weak Gravity Conjecture relate to their counterparts in the asymptotic de Sitter Conjecture and Swampland Distance Conjecture.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang ◽  
Yingfei Gu ◽  
Alexei Kitaev

Abstract We argue that “stringy” effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the leading diagrams are ladders with thin rungs. Thus, such models are unlikely candidates for sub-AdS holography. In the weak coupling limit, we derive a relation between the branching time, the Lyapunov exponent, and the quasiparticle lifetime using two different approximations.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nikolay Bobev ◽  
Friðrik Freyr Gautason ◽  
Jesse van Muiden

Abstract We employ a non-compact gauging of four-dimensional maximal supergravity to construct a two-parameter family of AdS4 J-fold solutions preserving $$ \mathcal{N} $$ N = 2 supersymmetry. All solutions preserve $$ \mathfrak{u} $$ u (1) × $$ \mathfrak{u} $$ u (1) global symmetry and in special limits we recover the previously known $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{u} $$ u (1) invariant $$ \mathcal{N} $$ N = 2 and $$ \mathfrak{su} $$ su (2) × $$ \mathfrak{su} $$ su (2) invariant $$ \mathcal{N} $$ N = 4 J-fold solutions. This family of AdS4 backgrounds can be uplifted to type IIB string theory and is holographically dual to the conformal manifold of a class of three-dimensional S-fold SCFTs obtained from the $$ \mathcal{N} $$ N = 4 T [U(N)] theory of Gaiotto-Witten. We find the spectrum of supergravity excitations of the AdS4 solutions and use it to study how the operator spectrum of the three-dimensional SCFT depends on the exactly marginal couplings.


Sign in / Sign up

Export Citation Format

Share Document