homology class
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Sergei Alexandrov ◽  
Ashoke Sen ◽  
Bogdan Stefański

Abstract Type IIA string theory compactified on a Calabi-Yau threefold has a hypermultiplet moduli space whose metric is known to receive non-perturbative corrections from Euclidean D2-branes wrapped on 3-cycles. These corrections have been computed earlier by making use of mirror symmetry, S-duality and twistorial description of quaternionic geometries. In this paper we compute the leading corrections in each homology class using a direct world-sheet approach without relying on any duality symmetry or supersymmetry. Our results are in perfect agreement with the earlier predictions.


2021 ◽  
Vol 157 (11) ◽  
pp. 2433-2493
Author(s):  
Cedric Membrez ◽  
Emmanuel Opshtein

Abstract Our main result is the $\mathbb {\mathcal {C}}^{0}$ -rigidity of the area spectrum and the Maslov class of Lagrangian submanifolds. This relies on the existence of punctured pseudoholomorphic disks in cotangent bundles with boundary on the zero section, whose boundaries represent any integral homology class. We discuss further applications of these punctured disks in symplectic geometry.


Author(s):  
Ailsa Keating

AbstractWe present techniques, inspired by monodromy considerations, for constructing compact monotone Lagrangians in certain affine hypersurfaces, chiefly of Brieskorn–Pham type. We focus on dimensions 2 and 3, though the constructions generalise to higher ones. The techniques give significant latitude in controlling the homology class, Maslov class and monotonicity constant of the Lagrangian, and a range of possible diffeomorphism types; they are also explicit enough to be amenable to calculations of pseudo-holomorphic curve invariants. Applications include infinite families of monotone Lagrangian $$S^1 \times \Sigma _g$$ S 1 × Σ g in $${\mathbb {C}}^3$$ C 3 , distinguished by soft invariants for any genus $$g \ge 2$$ g ≥ 2 ; and, for fixed soft invariants, a range of infinite families of Lagrangians in Brieskorn–Pham hypersurfaces. These are generally distinct up to Hamiltonian isotopy. In specific cases, we also set up well-defined counts of Maslov zero holomorphic annuli, which distinguish the Lagrangians up to compactly supported symplectomorphisms. Inter alia, these give families of exact monotone Lagrangian tori which are related neither by geometric mutation nor by compactly supported symplectomorphisms.


Author(s):  
Simone Noja ◽  
Riccardo Re

AbstractWe construct the super Koszul complex of a free supercommutative A-module V of rank p|q and prove that its homology is concentrated in a single degree and it yields an exact resolution of A. We then study the dual of the super Koszul complex and show that its homology is concentrated in a single degree as well and isomorphic to $$\Pi ^{p+q} A$$ Π p + q A , with $$\Pi $$ Π the parity changing functor. Finally, we show that, given an automorphism of V, the induced transformation on the only non-trivial homology class of the dual of the super Koszul complex is given by the multiplication by the Berezinian of the automorphism, thus relating this homology group with the Berezinian module of V.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Jonathan Harper

Abstract Starting from the entanglement wedge of a multipartite mixed state we describe a purification procedure which involves the gluing of several copies. The resulting geometry has non-trivial topology and a single oriented boundary for each original boundary region. In the purified geometry the original multipartite entanglement wedge cross section is mapped to a minimal surface of a particular non-trivial homology class. In contrast, each original bipartite entanglement wedge cross section is mapped to the minimal wormhole throat around each boundary. Using the bit thread formalism we show how maximal flows for the bipartite and multipartite entanglement wedge cross section can be glued together to form maximal multiflows in the purified geometry. The defining feature differentiating the flows is given by the existence of threads which cross between different copies of the original entanglement wedge. Together these demonstrate a possible connection between multipartite entanglement and the topology of holographic spacetimes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Denis Auroux ◽  
Ivan Smith

Abstract We prove that every spherical object in the derived Fukaya category of a closed surface of genus at least $2$ whose Chern character represents a nonzero Hochschild homology class is quasi-isomorphic to a simple closed curve equipped with a rank $1$ local system. (The homological hypothesis is necessary.) This largely answers a question of Haiden, Katzarkov and Kontsevich. It follows that there is a natural surjection from the autoequivalence group of the Fukaya category to the mapping class group. The proofs appeal to and illustrate numerous recent developments: quiver algebra models for wrapped categories, sheafifying the Fukaya category, equivariant Floer theory for finite and continuous group actions and homological mirror symmetry. An application to high-dimensional symplectic mapping class groups is included.


Author(s):  
Kaloshin Vadim ◽  
Zhang Ke

This chapter formulates and proves the jump mechanism. It constructs a variational problem which proves forcing equivalence for the original Hamiltonian using Definition 6.18. It first constructs a special variational problem for the slow mechanical system. A solution of this variational problem is an orbit “jumping” from one homology class to the other. The chapter then modifies this variational problem for the fast time-periodic perturbation of the slow mechanical system. This is achieved by applying the perturbative results established in Chapter 7. Recall the original Hamiltonian system near a double resonance can be brought to a normal form and this normal form, in turn, is related to the perturbed slow system through coordinate change and energy reduction. The variational problem for the perturbed slow system can then be converted to a variational problem for the original.


Author(s):  
Francesco Bei ◽  
Paolo Piazza

Abstract Let $(X,h)$ be a compact and irreducible Hermitian complex space. This paper is devoted to various questions concerning the analytic K-homology of $(X,h)$. In the 1st part, assuming either $\dim (\operatorname{sing}(X))=0$ or $\dim (X)=2$, we show that the rolled-up operator of the minimal $L^2$-$\overline{\partial }$ complex, denoted here $\overline{\eth }_{\textrm{rel}}$, induces a class in $K_0 (X)\equiv KK_0(C(X),\mathbb{C})$. A similar result, assuming $\dim (\operatorname{sing}(X))=0$, is proved also for $\overline{\eth }_{\textrm{abs}}$, the rolled-up operator of the maximal $L^2$-$\overline{\partial }$ complex. We then show that when $\dim (\operatorname{sing}(X))=0$ we have $[\overline{\eth }_{\textrm{rel}}]=\pi _*[\overline{\eth }_M]$ with $\pi :M\rightarrow X$ an arbitrary resolution and with $[\overline{\eth }_M]\in K_0 (M)$ the analytic K-homology class induced by $\overline{\partial }+\overline{\partial }^t$ on $M$. In the 2nd part of the paper we focus on complex projective varieties $(V,h)$ endowed with the Fubini–Study metric. First, assuming $\dim (V)\leq 2$, we compare the Baum–Fulton–MacPherson K-homology class of $V$ with the class defined analytically through the rolled-up operator of any $L^2$-$\overline{\partial }$ complex. We show that there is no $L^2$-$\overline{\partial }$ complex on $(\operatorname{reg}(V),h)$ whose rolled-up operator induces a K-homology class that equals the Baum–Fulton–MacPherson class. Finally in the last part of the paper we prove that under suitable assumptions on $V$ the push-forward of $[\overline{\eth }_{\textrm{rel}}]$ in the K-homology of the classifying space of the fundamental group of $V$ is a birational invariant.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
José A. Zapata

In a spacetime divided into two regions U1 and U2 by a hypersurface Σ, a perturbation of the field in U1 is coupled to perturbations in U2 by means of the holographic imprint that it leaves on Σ. The linearized gluing field equation constrains perturbations on the two sides of a dividing hypersurface, and this linear operator may have a nontrivial null space. A nontrivial perturbation of the field leaving a holographic imprint on a dividing hypersurface which does not affect perturbations on the other side should be considered physically irrelevant. This consideration, together with a locality requirement, leads to the notion of gauge equivalence in Lagrangian field theory over confined spacetime domains. Physical observables in a spacetime domain U can be calculated integrating (possibly nonlocal) gauge invariant conserved currents on hypersurfaces such that ∂Σ⊂∂U. The set of observables of this type is sufficient to distinguish gauge inequivalent solutions. The integral of a conserved current on a hypersurface is sensitive only to its homology class [Σ], and if U is homeomorphic to a four ball the homology class is determined by its boundary S=∂Σ. We will see that a result of Anderson and Torre implies that for a class of theories including vacuum general relativity all local observables are holographic in the sense that they can be written as integrals of over the two-dimensional surface S. However, nonholographic observables are needed to distinguish between gauge inequivalent solutions.


Sign in / Sign up

Export Citation Format

Share Document