scholarly journals Erratum to: Measurement of hadronic event shapes in high-pT multijet final states at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract The results of a search for new phenomena in final states with b-jets and missing transverse momentum using 139 fb−1 of proton-proton data collected at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV by the ATLAS detector at the LHC are reported. The analysis targets final states produced by the decay of a pair-produced supersymmetric bottom squark into a bottom quark and a stable neutralino. The analysis also seeks evidence for models of pair production of dark matter particles produced through the decay of a generic scalar or pseudoscalar mediator state in association with a pair of bottom quarks, and models of pair production of scalar third-generation down-type leptoquarks. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered by the analysis. Bottom squark masses below 1270 GeV are excluded at 95% confidence level if the neutralino is massless. In the case of nearly mass-degenerate bottom squarks and neutralinos, the use of dedicated secondary-vertex identification techniques permits the exclusion of bottom squarks with masses up to 660 GeV for mass splittings between the squark and the neutralino of 10 GeV. These limits extend substantially beyond the regions of parameter space excluded by similar ATLAS searches performed previously.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Jeremy Baron ◽  
Daniel Reichelt ◽  
Steffen Schumann ◽  
Niklas Schwanemann ◽  
Vincent Theeuwes

Abstract Soft-drop grooming of hadron-collision final states has the potential to significantly reduce the impact of non-perturbative corrections, and in particular the underlying-event contribution. This eventually will enable a more direct comparison of accurate perturbative predictions with experimental measurements. In this study we consider soft-drop groomed dijet event shapes. We derive general results needed to perform the resummation of suitable event-shape variables to next-to-leading logarithmic (NLL) accuracy matched to exact next-to-leading order (NLO) QCD matrix elements. We compile predictions for the transverse-thrust shape accurate to NLO + NLL′ using the implementation of the Caesar formalism in the Sherpa event generator framework. We complement this by state-of-the-art parton- and hadron-level predictions based on NLO QCD matrix elements matched with parton showers. We explore the potential to mitigate non-perturbative corrections for particle-level and track-based measurements of transverse thrust by considering a wide range of soft-drop parameters. We find that soft-drop grooming indeed is very efficient in removing the underlying event. This motivates future experimental measurements to be compared to precise QCD predictions and employed to constrain non-perturbative models in Monte-Carlo simulations.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

The Lagrangian in eq. (2.1) of JHEP11 (2020) 005 has an erroneous factor of 1/2. The analysis code used for the results reported in the paper does not have this factor. The results remain unchanged.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. The results are interpreted in the context of various R-parity-conserving models where squarks and gluinos are produced in pairs or in association and a neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.30 TeV for a simplified model containing only a gluino and the lightest neutralino, assuming the latter is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.85 TeV are excluded if the lightest neutralino is massless. These limits extend substantially beyond the region of supersymmetric parameter space excluded previously by similar searches with the ATLAS detector.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract This paper presents a search for new heavy particles decaying into a pair of top quarks using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search is performed using events consistent with pair production of high-transverse-momentum top quarks and their subsequent decays into the fully hadronic final states. The analysis is optimized for resonances decaying into a $$ t\overline{t} $$ t t ¯ pair with mass above 1.4 TeV, exploiting a dedicated multivariate technique with jet substructure to identify hadronically decaying top quarks using large-radius jets and evaluating the background expectation from data. No significant deviation from the background prediction is observed. Limits are set on the production cross-section times branching fraction for the new Z′ boson in a topcolor-assisted-technicolor model. The Z′ boson masses below 3.9 and 4.7 TeV are excluded at 95% confidence level for the decay widths of 1% and 3%, respectively.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Ayan Mukhopadhyay ◽  
Sourav Pal ◽  
Anurag Tripathi

AbstractEvent shapes are classical tools for the determination of the strong coupling and for the study of hadronization effects in electron-positron annihilation. In the context of analytical studies, hadronization corrections take the form of power-suppressed contributions to the cross section, which can be extracted from the perturbative ambiguity of Borel-resummed distributions. We propose a simplified version of the well-established method of Dressed Gluon Exponentiation (DGE), which we call Eikonal DGE (EDGE), which determines all dominant power corrections to event shapes by means of strikingly elementary calculations. We believe our method can be generalized to hadronic event shapes and jet shapes of relevance for LHC physics.


Sign in / Sign up

Export Citation Format

Share Document