scholarly journals Absorption in Invariant Domains for Semigroups of Quantum Channels

Author(s):  
Raffaella Carbone ◽  
Federico Girotti

AbstractWe introduce a notion of absorption operators in the context of quantum Markov processes. The absorption problem in invariant domains (enclosures) is treated for a quantum Markov evolution on a separable Hilbert space, both in discrete and continuous times: We define a well-behaving set of positive operators which can correspond to classical absorption probabilities, and we study their basic properties, in general, and with respect to accessibility structure of channels, transience and recurrence. In particular, we can prove that no accessibility is allowed between the null and positive recurrent subspaces. In the case, when the positive recurrent subspace is attractive, ergodic theory will allow us to get additional results, in particular about the description of fixed points.

2020 ◽  
Vol 27 (01) ◽  
pp. 2050005
Author(s):  
Khadija Bessadok ◽  
Franco Fagnola ◽  
Skander Hachicha

We study the fundamental properties of classical and quantum Markov processes generated by q-Bessel operators and their extension to the algebra of all bounded operators on the Hilbert space [Formula: see text]. In particular, we find a suitable generalized Gorini–Kossakowski–Sudarshan–Lindblad representation for the infinitesimal generator of q-Bessel operator and show that both the classical and quantum Markov processes are transient for α > 0 and recurrent for α = 0. We also show that they do not admit invariant states and, moreover that the support projection of any initial state instantaneously fills the full space.


Author(s):  
UWE FRANZ

We show how classical Markov processes can be obtained from quantum Lévy processes. It is shown that quantum Lévy processes are quantum Markov processes, and sufficient conditions for restrictions to subalgebras to remain quantum Markov processes are given. A classical Markov process (which has the same time-ordered moments as the quantum process in the vacuum state) exists whenever we can restrict to a commutative subalgebra without losing the quantum Markov property.8 Several examples, including the Azéma martingale, with explicit calculations are presented. In particular, the action of the generator of the classical Markov processes on polynomials or their moments are calculated using Hopf algebra duality.


2010 ◽  
Vol 51 (12) ◽  
pp. 122201 ◽  
Author(s):  
K. Temme ◽  
M. J. Kastoryano ◽  
M. B. Ruskai ◽  
M. M. Wolf ◽  
F. Verstraete

2019 ◽  
Vol 10 (4) ◽  
pp. 377-394
Author(s):  
Anirudha Poria ◽  
Jitendriya Swain

AbstractLet {\mathbb{H}} be a separable Hilbert space. In this paper, we establish a generalization of Walnut’s representation and Janssen’s representation of the {\mathbb{H}}-valued Gabor frame operator on {\mathbb{H}}-valued weighted amalgam spaces {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}. Also, we show that the frame operator is invertible on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, if the window function is in the Wiener amalgam space {W_{\mathbb{H}}(L^{\infty},L^{1}_{w})}. Further, we obtain the Walnut representation and invertibility of the frame operator corresponding to Gabor superframes and multi-window Gabor frames on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, as a special case by choosing the appropriate Hilbert space {\mathbb{H}}.


1982 ◽  
Vol 34 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
A. van Daele

Let M be a von Neumann algebra acting on a Hilbert space and assume that M has a separating and cyclic vector ω in . Then it can happen that M contains a proper von Neumann subalgebra N for which ω is still cyclic. Such an example was given by Kadison in [4]. He considered and acting on where is a separable Hilbert space. In fact by a result of Dixmier and Maréchal, M, M′ and N have a joint cyclic vector [3]. Also Bratteli and Haagerup constructed such an example ([2], example 4.2) to illustrate the necessity of one of the conditions in the main result of their paper. In fact this situation seems to occur rather often in quantum field theory (see [1] Section 24.2, [3] and [4]).


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Alfredas Račkauskas

Abstract We investigate the asymptotic normality of distributions of the sequence {\sum_{k\in\mathbb{Z}}u_{n,k}X_{k}} , {n\in\mathbb{N}} , where {(X_{k},k\in\mathbb{Z})} either is a sequence of i.i.d. random elements or constitutes a linear process with i.i.d. innovations in a separable Hilbert space. The weights {(u_{n,k})} are in general a family of linear bounded operators. This model includes operator weighted sums of Hilbert space valued linear processes, operator-wise discounted sums in a Hilbert space as well some extensions of classical summation methods.


Sign in / Sign up

Export Citation Format

Share Document