scholarly journals A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1

Author(s):  
Cecilia Martínez-Martínez ◽  
Maria José Gonzalo ◽  
Pablo Sipowicz ◽  
Manuel Campos ◽  
Irene Martínez-Fernández ◽  
...  

Abstract Key message The gene underlying the melon fruit shape QTL fsqs8.1 is a member of the Ovate Family Proteins. Variation in fruit morphology is caused by changes in gene expression likely due to a cryptic structural variation in this locus. Abstract Melon cultivars have a wide range of fruit morphologies. Quantitative trait loci (QTL) have been identified underlying such diversity. This research focuses on the fruit shape QTL fsqs8.1, previously detected in a cross between the accession PI 124112 (CALC, producing elongated fruit) and the cultivar ‘Piel de Sapo’ (PS, producing oval fruit). The CALC fsqs8.1 allele induced round fruit shape, being responsible for the transgressive segregation for this trait observed in that population. In fact, the introgression line CALC8-1, carrying the fsqs8.1 locus from CALC into the PS genetic background, produced perfect round fruit. Following a map-based cloning approach, we found that the gene underlying fsqs8.1 is a member of the Ovate Family Proteins (OFP), CmOFP13, likely a homologue of AtOFP1 and SlOFP20 from Arabidopsis thaliana and tomato, respectively. The induction of the round shape was due to the higher expression of the CALC allele at the early ovary development stage. The fsqs8.1 locus showed an important structural variation, being CmOFP13 surrounded by two deletions in the CALC genome. The deletions are present at very low frequency in melon germplasm. Deletions and single nucleotide polymorphisms in the fsqs8.1 locus could not be not associated with variation in fruit shape among different melon accessions, what indicates that other genetic factors should be involved to induce the CALC fsqs8.1 allele effects. Therefore, fsqs8.1 is an example of a cryptic variation that alters gene expression, likely due to structural variation, resulting in phenotypic changes in melon fruit morphology.

HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 583-585 ◽  
Author(s):  
H.C. Wien ◽  
Y. Zhang

Catfacing of tomato (Lycopersicon esculentum Mill.) fruit describes the enlarged blossom-end scar and ridged, flattened or irregular fruit shape often found on plants subjected to low temperature during ovary development. Experiments were conducted to determine if GA3 foliar sprays could be used as a screening tool for catfacing. Concentrations of 5 to 50 μM of GA3, applied once at transplanting, significantly increased catfacing incidence on the susceptible `Revolution', whereas the resistant `Valerie' was less affected. Two applications 8 days apart extended symptoms to later clusters formed on branches and may be useful for screening cultivars of a wide range of earliness. Plant apex removal may also be possible as a fruit catfacing screening tool. Chemical name used: gibberellic acid (GA3).


1992 ◽  
Vol 85 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Maria-Jose Sanchez-Beltran ◽  
Juan Carbonell ◽  
Jose L. Garcia-Martinez ◽  
Isabel Lopez-Diaz

2019 ◽  
Vol 19 (5) ◽  
pp. 599-609 ◽  
Author(s):  
Sumathi Sundaravadivelu ◽  
Sonia K. Raj ◽  
Banupriya S. Kumar ◽  
Poornima Arumugamand ◽  
Padma P. Ragunathan

Background: Functional foods, neutraceuticals and natural antioxidants have established their potential roles in the protection of human health and diseases. Thymoquinone (TQ), the main bioactive component of Nigella sativa seeds (black cumin seeds), a plant derived neutraceutical was used by ancient Egyptians because of their ability to cure a variety of health conditions and used as a dietary food supplement. Owing to its multi targeting nature, TQ interferes with a wide range of tumorigenic processes and counteracts carcinogenesis, malignant growth, invasion, migration, and angiogenesis. Additionally, TQ can specifically sensitize tumor cells towards conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy) and simultaneously minimize therapy-associated toxic effects in normal cells besides being cost effective and safe. TQ was found to play a protective role when given along with chemotherapeutic agents to normal cells. Methods: In the present study, reverse in silico docking approach was used to search for potential molecular targets for cancer therapy. Various metastatic and apoptotic targets were docked with the target ligand. TQ was also tested for its anticancer activities for its ability to cause cell death, arrest cell cycle and ability to inhibit PARP gene expression. Results: In silico docking studies showed that TQ effectively docked metastatic targets MMPs and other apoptotic and cell proliferation targets EGFR. They were able to bring about cell death mediated by apoptosis, cell cycle arrest in the late apoptotic stage and induce DNA damage too. TQ effectively down regulated PARP gene expression which can lead to enhanced cancer cell death. Conclusion: Thymoquinone a neutraceutical can be employed as a new therapeutic agent to target triple negative breast cancer which is otherwise difficult to treat as there are no receptors on them. Can be employed along with standard chemotherapeutic drugs to treat breast cancer as a combinatorial therapy.


Ecotoxicology ◽  
2021 ◽  
Author(s):  
Daesik Park ◽  
Catherine R. Propper ◽  
Guangning Wang ◽  
Matthew C. Salanga

AbstractNaturally occurring arsenic is toxic at extremely low concentrations, yet some species persist even in high arsenic environments. We wanted to test if these species show evidence of evolution associated with arsenic exposure. To do this, we compared allelic variation across 872 coding nucleotides of arsenic (+3) methyltransferase (as3mt) and whole fish as3mt gene expression from three field populations of Gambusia affinis, from water sources containing low (1.9 ppb), medium-low (3.3 ppb), and high (15.7 ppb) levels of arsenic. The high arsenic site exceeds the US EPA’s Maximum Contamination Level for drinking water. Medium-low and high populations exhibited homozygosity, and no sequence variation across all animals sampled. Eleven of 24 fish examined (45.8%) in the low arsenic population harbored synonymous single nucleotide polymorphisms (SNPs) in exons 4 and/or 10. SNP presence in the low arsenic population was not associated with differences in as3mt transcript levels compared to fish from the medium-low site, where SNPs were noted; however, as3mt expression in fish from the high arsenic concentration site was significantly lower than the other two sites. Low sequence variation in fish populations from sites with medium-low and high arsenic concentrations suggests greater selective pressure on this allele, while higher variation in the low population suggests a relaxed selection. Our results suggest gene regulation associated with arsenic detoxification may play a more crucial role in influencing responses to arsenic than polymorphic gene sequence. Understanding microevolutionary processes to various contaminants require the evaluation of multiple populations across a wide range of pollution exposures.


2021 ◽  
Vol 11 (13) ◽  
pp. 5859
Author(s):  
Fernando N. Santos-Navarro ◽  
Yadira Boada ◽  
Alejandro Vignoni ◽  
Jesús Picó

Optimal gene expression is central for the development of both bacterial expression systems for heterologous protein production, and microbial cell factories for industrial metabolite production. Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the interaction between the cell host and expression of the protein of interest. Our model predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes as a function of substrate uptake and the following main lab-accessible gene expression-related characteristics: promoter strength, gene copy number and ribosome binding site strength. We evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for a wide range of expression levels and the sensitivity of the TRY space to variations in substrate availability. Our results show that, at low expression levels, gene transcription mainly defined TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the product of both, in agreement with experiments in the literature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iman S. Naga ◽  
Amel Abdel Fattah Kamel ◽  
Said Ahmed Ooda ◽  
Hadeer Muhammad Fath Elbab ◽  
Rania Mohamed El-Sharkawy

Abstract Background Hepatitis C virus infection is a global health challenge with Egypt being one of the highly affected countries. IL-10 has been suggested as a suitable marker to assess necroinflammation and to monitor the progression of liver damage. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor playing a central role in many physiological as well as pathological processes. Several factors can be predictive of the response to treatment and achievement of SVR; some of which are host-related, and others are virus-related. The gene expression of IL-10 and VEGF have multiple effects for treatment response. The aim of the present work was to study the effect of treatment with directly acting agents (DAA) on the expression of VEGF and IL-10 genes in chronic hepatitis C virus-infected Egyptian genotype-4a patients. Twenty-five HCV subjects where evaluated for IL-10 and VEGF gene expression before and after treatment with DAA. Results IL-10 expression was downregulated in 92% of the cases. VEGF expression was heterogeneous showing spreading of values along a wide range with 64% of the cases being downregulated. Conclusion DAAs do not completely reverse the immunological imprints established upon chronic HCV infection.


2021 ◽  
Vol 5 (10) ◽  
pp. 1382-1393
Author(s):  
Xinyu Jiang ◽  
Qingxin Song ◽  
Wenxue Ye ◽  
Z. Jeffrey Chen

AbstractDuring evolution successful allopolyploids must overcome ‘genome shock’ between hybridizing species but the underlying process remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsisthaliana (TT) and Arabidopsisarenosa (AA). A. suecica shows conserved gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inherited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dora Henriques ◽  
Ana R. Lopes ◽  
Nor Chejanovsky ◽  
Anne Dalmon ◽  
Mariano Higes ◽  
...  

AbstractWith a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3’ and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


Sign in / Sign up

Export Citation Format

Share Document