scholarly journals Dilinoleoyl-phosphatidic acid mediates reduced IRS-1 tyrosine phosphorylation in rat skeletal muscle cells and mouse muscle

Diabetologia ◽  
2007 ◽  
Vol 50 (8) ◽  
pp. 1732-1742 ◽  
Author(s):  
R. Cazzolli ◽  
T. W. Mitchell ◽  
J. G. Burchfield ◽  
D. J. Pedersen ◽  
N. Turner ◽  
...  
2004 ◽  
Vol 19 (3) ◽  
pp. 1-24 ◽  
Author(s):  
Russell Hyde ◽  
Eric Hajduch ◽  
Darren J. Powell ◽  
Peter M. Taylor ◽  
Harinder S. Hundal

1990 ◽  
Vol 40 (5) ◽  
pp. 1043-1048 ◽  
Author(s):  
Marie-Helene Disatnik ◽  
Sanford R. Sampson ◽  
Asher Shainberg

2002 ◽  
Vol 205 (23) ◽  
pp. 3739-3746 ◽  
Author(s):  
Naresh Kumar ◽  
Chinmoy S. Dey

SUMMARY Sulfonylurea drugs are used in the treatment of type 2 diabetes. The mechanism of action of sulfonylureas is to release insulin from pancreatic cells and they have been proposed to act on insulin-sensitive tissues to enhance glucose uptake. The goal of the present study was to test the hypothesis that gliclazide, a second-generation sulfonylurea, could enhance insulin signaling in insulin-resistant skeletal muscle cells. We demonstrated that gliclazide enhanced insulin-stimulated insulin receptor tyrosine phosphorylation in insulin-resistant skeletal muscle cells. Although insulin receptor substrate-1 tyrosine phosphorylation was unaffected by gliclazide treatment, phosphatidylinositol 3-kinase activity was partially restored by treatment with gliclazide. No increase in 2-deoxyglucose uptake in insulin-resistant cells by treatment with gliclazide was observed. Further investigations into the mitogen-activated protein kinase (MAPK) pathway revealed that insulin-stimulated p38 phosphorylation was impaired, as compared with extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase(JNK), which were phosphorylated normally in insulin-resistant cells. Treatment with gliclazide could not restore p38 phosphorylation in insulin-resistant cells. We propose that gliclazide can regulate part of the insulin signaling in insulin-resistant skeletal muscle, and p38 could be a potential therapeutic target for glucose uptake to treat insulin resistance.


2019 ◽  
Vol 52 ◽  
pp. 663-669 ◽  
Author(s):  
Zhongqin Chen ◽  
Weiwei Li ◽  
Qingwen Guo ◽  
Leilei Xu ◽  
Ramesh Kumar Santhanam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document