Calculation method of spatial configuration of tube billet in roll forming process of a high strength steel drive shaft tube

2018 ◽  
Vol 97 (9-12) ◽  
pp. 3339-3358 ◽  
Author(s):  
Wendong Zhang ◽  
Guoqun Zhao ◽  
Zhen Zhai ◽  
Chunfeng Zhao ◽  
Qianjin Fu
2018 ◽  
Vol 878 ◽  
pp. 296-301
Author(s):  
Dong Won Jung

The roll forming is one of the simplest manufacturing processes for meeting the continued needs of various industries. The roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for making structural components. In order to reduce the thinning of the sheet product, traditionally the roll forming has been suggested instead of the stamping process. The increased product performance, higher quality, and the lowest cost with other advantages have made roll forming processes suitable to form any shapes in the sheets. In this numerical study, a Finite Element Method is applied to estimate the stress, strain and the thickness distribution in the metal sheet with quadrilateral shape, ribs formed by the 11 steps roll forming processes using a validated model. The metal sheet of size 1,000 × 662 × 1.6 mm taken from SGHS steel was used to form the quadrilateral shape ribs on it by the roll forming process. The simulation results of the 11 step roll forming show that the stress distribution was almost uniform and the strain distribution was concentrated on the ribs. The maximum thinning strain was observed in the order of 15.5 % in the middle rib region possibly due to the least degree of freedom of the material.


2011 ◽  
Vol 189-193 ◽  
pp. 3001-3006 ◽  
Author(s):  
Pei Jie Yan ◽  
Jing Tao Han ◽  
Zheng Yi Jiang ◽  
Hei Jie Li ◽  
Li Xian Liu

In recent years, the number of automobiles has been steadily increasing, which has significantly impacted on the society and human life, and led to many social problems such as fuel crisis, environment pollution. Therefore, lightweight designing becomes a focused issue. Lightweight materials application, optimized structure design and advanced manufacturing process are the main ways to achieve the lightweight. However, low plasticity and ductility of high strength steel constrain the application of high strength steel. In this paper, the basic principle of roll forming for automotive parts is investigated, and it is innovatively applied in the hot roll forming process of the ultra high strength steel.


2013 ◽  
Vol 740 ◽  
pp. 323-331 ◽  
Author(s):  
Zhen Feng Yang ◽  
Qiang Li ◽  
Yan Zhi Guan

In this paper, the high-strength steel three-dimensional roll forming production line prototype is studied. The dynamic differential equations of 3D roll forming machine mechanical systems are established by the principle of dynamic balance. The dynamic differential equations are solved out by using MATLAB with the engineering example finite element simulation data. The dynamic characteristics of the forming process of 1.5mm TRIP590 high-strength steel sheet are obtained by the System response. The results can help to improve the performance of the prototype mechanical systems.


2014 ◽  
Vol 622-623 ◽  
pp. 322-329
Author(s):  
Kwang Soo Park ◽  
Sook Hwan Kim ◽  
Dong Kyu Kim

A jack-up rig or a self-elevating unit is a type of mobile platform that consists of a buoyant hull fitted with a number of movable legs, capable of raising its hull over the surface of the sea. The buoyant hull enables transportation of the unit and all attached machinery to a desired location. Once on location the hull is raised to the required elevation above the sea surface on its legs supported by the sea bed. The legs of such units may be designed to penetrate the sea bed, may be fitted with enlarged sections or footings, or may be attached to a bottom mat. Generally Jack up rigs are not self-propelled and rely on tugs or heavy lift shipsfor transportation. Formability problems in offshore structure construction where particularly high-strength steels are used for chords and racks. Attainment of mechanical properties is not usually difficult, although procedural trials are advisable. Fatigue cracking is probably the major cause of service failure of jack-up rigs, and the use of high-strength steels, which permits higher static stress limits, can exacerbate this problem. Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, it is time-consuming and much money is needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process.


Sign in / Sign up

Export Citation Format

Share Document